Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.885
Filter
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20230374, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39230459

ABSTRACT

For prey, movement synchrony represents a potent antipredator strategy. Prey, however, must balance the costs and benefits of using conspecifics to mediate risk. Thus, the emergent patterns of risk-driven sociality depend on variation in space and in the predators and prey themselves. We applied the concept of predator-prey habitat domain, the space in which animals acquire food resources, to test the conditions under which individuals synchronize their movements relative to predator and prey habitat domains. We tested the response of movement synchrony of prey to predator-prey domains in two populations of ungulates that vary in their gregariousness and predator community: (i) elk, which are preyed on by wolves; and (ii) caribou, which are preyed on by coyotes and black bears. Prey in both communities responded to cursorial predators by increasing synchrony during seasons of greater predation pressure. Elk moved more synchronously in the wolf habitat domain during winter and caribou moved more synchronously in the coyote habitat domains during spring. In the winter, caribou increased movement synchrony when coyote and caribou domains overlapped. By integrating habitat domains with movement ecology, we provide a compelling argument for social behaviours and collective movement as an antipredator response. This article is part of the theme issue 'The spatial-social interface: A theoretical and empirical integration'.


Subject(s)
Coyotes , Deer , Predatory Behavior , Reindeer , Wolves , Animals , Wolves/physiology , Deer/physiology , Reindeer/physiology , Coyotes/physiology , Ursidae/physiology , Ecosystem , Food Chain , Seasons , Social Behavior , Movement
2.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39243221

ABSTRACT

The date palm (Phoenix dactylifera L.) (Arecales: Arecaceae) is the most economically important crop in Oman with an annual production of >360,000 tons of fruit. The Dubas bug (Ommatissus lybicus de Bergevin) (Hemiptera: Tropiduchidae) is one of the major pests of date palms, causing up to a 50% reduction in fruit production. Across the course of 2 seasons, a variety of arthropod predators living in the date palm canopy were investigated for possible biological control of Dubas bugs, given the growing interest in nonchemical insect pest control in integrated pest management. We collected ~6,900 arthropod predators directly from date palm fronds from 60 Omani date palm plantations and tested them for Dubas bug predation using PCR-based molecular gut content analysis. We determined that ≥56 species of arthropod predators feed on the Dubas bug. We found that predatory mites, ants, and the entire predator community combined showed a positive correlation between predation detection frequency and increasing Dubas bug density. Additionally, there was a significant impact of season on gut content positives, with the spring season having a significantly higher percentage of predators testing positive for Dubas bug, suggesting this season could be the most successful time to target conservation biological control programs utilizing a diverse suite of predators.


Subject(s)
Food Chain , Heteroptera , Phoeniceae , Predatory Behavior , Animals , Oman , Heteroptera/physiology , Hemiptera/physiology , Pest Control, Biological , Population Density , Ants/physiology , Mites/physiology , Seasons
3.
J Math Biol ; 89(4): 38, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240340

ABSTRACT

Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.


Subject(s)
Biological Evolution , Food Chain , Mathematical Concepts , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Population Dynamics/statistics & numerical data , Extinction, Biological , Computer Simulation , Mutation , Ecosystem
4.
Biol Lett ; 20(9): 20240194, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39226920

ABSTRACT

Direct evidence of trophic interactions between extinct species is rarely available in the fossil record. Here, we describe fish-mammal associations from the middle Eocene of Messel (Germany), consisting of three specimens of holosteans (one Atractosteus messelensis (Lepisosteidae) and two Cyclurus kehreri (Amiidae)) each preserved with a bat specimen (Palaeochiropteryx tupaiodon) lying in close contact with its jaws. This suggests that these fishes probably died after failed swallowing attempts, with the bat wing membrane entangled in their jaws resulting in a fatal handicap. Based on data from modern gars and bowfins, A. messelensis and C. kehreri may have opportunistically attacked drowning and dying individuals or scavenged on floating/sinking carcasses. This hypothesis is also supported by the unusually high number of bat specimens preserved in the deposits of the Eocene Lake Messel, suggesting that this group of small mammals may have represented a substantial food source for generalist feeders. This is the earliest case of chiropterophagy and the first known evidence of bat consumption by lepisosteid and amiid fishes, emphasizing the high trophic variability and adaptability of these groups throughout their evolutionary histories. The newly described associations provide important information for reconstructing the Eocene Lake Messel palaeoecosystem and its trophic web.


Subject(s)
Chiroptera , Fishes , Fossils , Lakes , Animals , Fossils/anatomy & histology , Chiroptera/physiology , Fishes/physiology , Fishes/anatomy & histology , Germany , Food Chain , Extinction, Biological
5.
Harmful Algae ; 138: 102704, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39244239

ABSTRACT

The production of allelochemicals by the toxigenic dinoflagellate Alexandrium catenella is one of the suggested mechanisms to facilitate its bloom formation and persistence by outcompeting other phototrophic protists and reducing grazing pressure. In Southern California, toxic events caused by A. catenella and paralytic shellfish toxins (PSTs) regularly impact coastal ecosystems; however, the trophic interactions and mechanisms promoting this species in a food web context are still not fully understood. In the present study, we combined a dynamical mathematical model with laboratory experiments to investigate potential toxic and allelochemical effects of an A. catenella strain isolated off the coast of Los Angeles, Southern California, on competitors and a common zooplankton consumer. Experiments were conducted using three toxigenic strains of A. catenella, comparing the new Californian isolate (Alex Cal) to two strains previously described from the North Sea, a lytic (Alex2) and non-lytic (Alex5) strain, testing for donor density-dependent effects on two phytoplankton species (Rhodomonas salina, Tetraselmis sp.) and on the rotifer Brachionus plicatilis. Bioassays revealed a steep decline in competitor and consumer populations with increasing Alex Cal concentrations, indicating an intermediate lytic activity compared to the North Sea strains (lytic Alex2 and non-lytic Alex5). The rotifer fed and grew well on the PST- toxic, but non-lytic Alex5 strain, while its survival significantly decreased with increasing concentrations of the two lytic strains Alex Cal and Alex 2, indicating that negative effects on the rotifer were mediated by allelochemicals rather than PST-toxins. Mixed culture experiments including both competitors and consumers demonstrated that the intensity of allelochemical effects not only depended on the A. catenella density but also on the target density. Negative effects on grazers were alleviated by co-occurring competitors with a lower sensitivity to allelochemicals, thus reducing harmful compounds and allowing grazing control on the dinoflagellate to come into effect again. Results from mixed culture experiments were supported by the mathematical approach used in this study which was calibrated with data from simple monoculture growth, pairwise competition and predator-prey experiments, demonstrating the applicability of this model approach to predict the outcome of more complex food web dynamics at the community level.


Subject(s)
Dinoflagellida , Pheromones , Dinoflagellida/physiology , Dinoflagellida/metabolism , Pheromones/metabolism , Animals , Food Chain , California , Marine Toxins/metabolism , Zooplankton/physiology
6.
Harmful Algae ; 138: 102705, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39244240

ABSTRACT

The dinoflagellate Alexandrium pseudogonyaulax, a harmful algal bloom species, is currently appearing in increasing frequency and abundance across Northern European waters, displacing other Alexandrium species. This mixotrophic alga produces goniodomins (GDs) and bioactive extracellular substances (BECs) that may pose a threat to coastal ecosystems and other marine resources. This study demonstrated the adverse effects of A. pseudogonyaulax on four marine trophic levels, including microalgae (Rhodomonas salina), microzooplankton (Polykrikos kofoidii) and mesozooplankton (Acartia tonsa), as well as fish gill cells (RTgill-W1, Oncorhynchus mykiss), ultimately leading to enhanced mortality and cell lysis. Furthermore, cell-free supernatants collected from A. pseudogonyaulax cultures caused complete loss of metabolic activity in the RTgill-W1 cell line, indicating ichthyotoxic properties, while all tested GDs were much less toxic. In addition, cell-free supernatants of A. pseudogonyaulax led to cell lysis of R. salina, while all tested GDs were non-lytic. Finally, reduced egg hatching rates of A. tonsa eggs exposed to cell-free supernatants of A. pseudogonyaulax and impaired mobility of P. kofoidii and A. tonsa exposed to A. pseudogonyaulax were also observed. Altogether, bioassay results suggest that the toxicity of A. pseudogonyaulax is mainly driven by BECs and not by GDs, although further research into factors modulating the lytic activity of Alexandrium spp. are needed.


Subject(s)
Dinoflagellida , Food Chain , Dinoflagellida/physiology , Animals , Harmful Algal Bloom , Zooplankton/physiology , Microalgae
7.
PeerJ ; 12: e17641, 2024.
Article in English | MEDLINE | ID: mdl-39099655

ABSTRACT

Background: Due to the copious disposal of plastics, marine ecosystems receive a large part of this waste. Microplastics (MPs) are solid particles smaller than 5 millimeters in size. Among the plastic polymers, polystyrene (PS) is one of the most commonly used and discarded. Due to its density being greater than that of water, it accumulates in marine sediments, potentially affecting benthic communities. This study investigated the ingestion of MP and their effect on the meiofauna community of a sandy beach. Meiofauna are an important trophic link between the basal and higher trophic levels of sedimentary food webs and may therefore be substantially involved in trophic transfer of MP and their associated compounds. Methods: We incubated microcosms without addition of MP (controls) and treatments contaminated with PS MP (1-µm) in marine sediments at three nominal concentrations (103, 105, 107particles/mL), for nine days, and sampled for meiofauna with collections every three days. At each sampling time, meiofauna were collected, quantified and identified to higher-taxon level, and ingestion of MP was quantified under an epifluorescence microscope. Results: Except for Tardigrada, all meiofauna taxa (Nematoda, turbellarians, Copepoda, Nauplii, Acari and Gastrotricha) ingested MP. Absorption was strongly dose dependent, being highest at 107 particles/mL, very low at 105 particles/mL and non-demonstrable at 103 particles/mL. Nematodes accumulated MP mainly in the intestine; MP abundance in the intestine increased with increasing incubation time. The total meiofauna density and species richness were significantly lower at the lowest MP concentration, while at the highest concentration these parameters were very similar to the control. In contrast, Shannon-Wiener diversity and evenness were greater in treatments with low MP concentration. However, these results should be interpreted with caution because of the low meiofauna abundances at the lower two MP concentrations. Conclusion: At the highest MP concentration, abundance, taxonomic diversity and community structure of a beach meiofauna community were not significantly affected, suggesting that MP effects on meiofauna are at most subtle. However, lower MP concentrations did cause substantial declines in abundance and diversity, in line with previous studies at the population and community level. While we can only speculate on the underlying mechanism(s) of this counterintuitive response, results suggest that further research is needed to better understand MP effects on marine benthic communities.


Subject(s)
Biodiversity , Microplastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Food Chain , Aquatic Organisms , Polystyrenes , Invertebrates/drug effects , Environmental Monitoring/methods
8.
Nat Microbiol ; 9(8): 1918-1928, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095499

ABSTRACT

The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.


Subject(s)
Food Chain , Microbiota , Soil Microbiology , Soil , Viruses , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Soil/chemistry , Animals , Plants/virology , Plants/microbiology , Ecosystem , Bacteria/virology , Bacteria/metabolism , Bacteria/genetics
9.
Proc Biol Sci ; 291(2029): 20241183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163979

ABSTRACT

In the Atlantic Arctic, bowhead whales (Balaena mysticetus) were nearly exterminated by European whalers between the seventeenth and nineteenth centuries. The collapse of the East Greenland-Svalbard-Barents Sea population, from an estimated 50 000 to a few hundred individuals, drastically reduced predation on mesozooplankton. Here, we tested the hypothesis that this event strongly favoured the demography of the little auk (Alle alle), a zooplanktivorous feeder competitor of bowhead whales and the most abundant seabird in the Arctic. To estimate the effect of bowhead whaling on little auk abundance, we modelled the trophic niche overlap between the two species using deterministic simulations of mesozooplankton spatial distribution. We estimated that bowhead whaling could have led to a 70% increase in northeast Atlantic Arctic little auk populations, from 2.8 to 4.8 million breeding pairs. While corresponding to a major population increase, this is far less than predicted by previous studies. Our study illustrates how a trophic shift can result from the near extirpation of a marine megafauna species, and the methodological framework we developed opens up new opportunities for marine trophic modelling.


Subject(s)
Food Chain , Animals , Arctic Regions , Bowhead Whale/physiology , Population Dynamics , Atlantic Ocean , Models, Biological , Zooplankton/physiology , Predatory Behavior , Greenland
10.
Science ; 385(6708): adl2362, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39088608

ABSTRACT

In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.


Subject(s)
Anthropogenic Effects , Ecosystem , Oceans and Seas , Sharks , Animals , Humans , Carbon Sequestration , Climate Change , Food Chain , Human Activities , Predatory Behavior , Sharks/physiology
11.
Ecol Lett ; 27(8): e14480, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096032

ABSTRACT

Nutrient enrichment and climate warming threaten freshwater systems. Metabolic theory and the paradox of enrichment predict that both stressors independently can lead to simpler food-webs having fewer nodes, shorter food-chains and lower connectance, but cancel each other's effects when simultaneously present. Yet, these theoretical predictions remain untested in complex natural systems. We inferred the food-web structure of 256 lakes and 373 streams from standardized fish community samplings in France. Contrary to theoretical predictions, we found that warming shortens fish food-chain length and that this effect was magnified in enriched streams and lakes. Additionally, lakes experiencing enrichment exhibit lower connectance in their fish food-webs. Our study suggests that warming and enrichment interact to magnify food-web simplification in nature, raising further concerns about the fate of freshwater systems as climate change effects will dramatically increase in the coming decades.


Subject(s)
Fishes , Food Chain , Lakes , Animals , France , Fishes/physiology , Climate Change , Fresh Water , Global Warming , Rivers
12.
Sci Rep ; 14(1): 17868, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090258

ABSTRACT

Extreme ecosystem modification by humans has caused drastic reductions in populations and ranges of top mammalian predators, while simultaneously allowing synanthropic mesopredator species to expand. These conditions often result in inflated local densities of highly adaptable mesopredators that disrupt trophic dynamics and place unsustainable predation pressure on native prey populations. Colonization of a dominant predator may lead to top-down control of mesopredators and restore trophic balance. Coyotes are a novel colonizer of some coastal barrier islands of eastern North America, offering an opportunity to test how the addition of an apex predator impacts an established guild of mesopredators. To assess their trophic impact, we conducted 75,576 camera trapping hours over an 18-month study period, capturing > 1.5 million images across 108 coastal camera sites. Using two-species occupancy and habitat use models, we found sizeable effects of coyote habitat use on that of red foxes and free-ranging domestic cats, suggesting that coyotes function as apex predators in barrier island ecosystems. In fact, the only factor that determined the spatial pattern of highly ubiquitous red foxes was the sympatric habitat use of the largest carnivore in the food web-coyotes. That 'novel' apex predators can become established in coastal food webs illustrates the highly dynamic nature of conservation challenges for habitats and species at the edge of the sea.


Subject(s)
Coyotes , Ecosystem , Food Chain , Foxes , Predatory Behavior , Animals , Predatory Behavior/physiology , Coyotes/physiology , Foxes/physiology , Mammals/physiology , Cats , North America
13.
Am Nat ; 204(3): 274-288, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39179233

ABSTRACT

AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.


Subject(s)
Mammals , Animals , Mammals/physiology , Body Size , Population Dynamics , Models, Biological , Predatory Behavior , Mortality , Food Chain , Extinction, Biological , Herbivory , Aging
14.
Bull Environ Contam Toxicol ; 113(3): 30, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179721

ABSTRACT

Components of the lower food web (mussels, Caridina and Omena) were collected from stations from Winam Gulf, Lake Victoria, Kenya in 2022 and 2023 to analyze for stable isotopes and total mercury (THg). Temporal comparisons were made with data generated for the same species in 1998. Values of δ15N in mussels and Caridina were similar (6.89‰ vs. 6.78 ± 0.13‰), while Omena occupied an elevated trophic position (9.97 ± 0.24‰) with minor shifts in δ15N over time. All species had elevated δ13C values in 2022-2023 versus 1998 supportive of enhanced eutrophication in the Gulf. THg concentrations exhibited modest spatial differences between sites (< 2.6 fold), but not between Caridina and Omena. Larger temporal differences were apparent relative to spatial patterns with THg concentrations decreasing in study species by 2.8 to 4.1-fold between years. An exposure assessment indicated that Omena, commonly found in local markets, can be consumed up to 0.74 kg/month without generating excess THg exposures.


Subject(s)
Environmental Monitoring , Food Chain , Lakes , Mercury , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Mercury/analysis , Animals , Kenya , Lakes/chemistry , Bivalvia , Nitrogen Isotopes/analysis , Spatio-Temporal Analysis , Carbon Isotopes/analysis
15.
Sci Rep ; 14(1): 19581, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179722

ABSTRACT

The European rabbit has invaded numerous ecosystems worldwide, but rarely steppes. Since its various introduction attempts into the ecosystems of the Magallanes/Fuegian region, the rabbit has become a key player, interacting with species at different trophic levels and generating impacts on ecosystems. To better understand the role of the rabbit in steppe and scrub ecosystems, we characterised the food web in the Magallanes/Fuegian region to understand the identity of their interacting species, the mechanisms and complexities of their interactions to demonstrate that rabbit management may become more complex than just controlling a single species. Based on a bibliographic review and wildlife specialists' opinions, we built the Magellanic/Fuegian food web, evaluated their topological properties and performed a rabbit extinction simulation to assess the possible short-term ecological mechanisms operating in the community. We found that the network had 206 nodes (64% native, 13% exotic, and 22% mixed) and 535 links among nodes. The European rabbit was the most connected node of the food web, had the second largest dietary breadth, and ranked as the seventh prey item with more predators. A rabbit extinction simulation shows a possible release of herbivory pressure on plants, including that on several native plants (e.g., Gunnera tinctoria, Pratia repens, Gavilea lutea, Tetroncium magellanicus), and a possible release of competition for some herbivores that share resources with the rabbit (e.g., Ovis aries, Lama guanicoe, Bos taurus). Although rabbit predators have a broad and generalist diet, some such as the native Galicitis cuja, could face a 20% reduction in their trophic width and could intensify predation on alternative prey. These results show that the European rabbit is strongly embedded in the Magellanic/Fuegian ecosystem and linked to several native species. Therefore, rabbit management should consider ecosystem approaches accompanied by monitoring programs on native fauna and experimental pilot studies on native flora to conserve the Chilean Patagonia community.


Subject(s)
Ecosystem , Food Chain , Animals , Rabbits , Chile , Introduced Species , Herbivory/physiology
16.
Commun Biol ; 7(1): 1039, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179787

ABSTRACT

Gelatinous filter feeders (e.g., salps, doliolids, and pyrosomes) have high filtration rates and can feed at predator:prey size ratios exceeding 10,000:1, yet are seldom included in ecosystem or climate models. We investigated foodweb and trophic dynamics in the presence and absence of salp blooms using traditional productivity and grazing measurements combined with compound-specific isotopic analysis of amino acids estimation of trophic position during Lagrangian framework experiments in the Southern Ocean. Trophic positions of salps ranging 10-132 mm in size were 2.2 ± 0.3 (mean ± std) compared to 2.6 ± 0.4 for smaller (mostly crustacean) mesozooplankton. The mostly herbivorous salp trophic position was maintained despite biomass dominance of ~10-µm-sized primary producers. We show that potential energy flux to >10-cm organisms increases by approximately an order of magnitude when salps are abundant, even without substantial alteration to primary production. Comparison to a wider dataset from other marine regions shows that alterations to herbivore communities are a better predictor of ecosystem transfer efficiency than primary-producer dynamics. These results suggest that diverse consumer communities and intraguild predation complicate climate change predictions (e.g., trophic amplification) based on linear food chains. These compensatory foodweb dynamics should be included in models that forecast marine ecosystem responses to warming and reduced nutrient supply.


Subject(s)
Ecosystem , Food Chain , Animals , Predatory Behavior , Biomass , Climate Change , Zooplankton/physiology
17.
Sci Total Environ ; 950: 174999, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39097011

ABSTRACT

The patchy distribution of microplastics (MP) and their size range similar to planktonic organisms, are likely to have major ecological consequences, through MP ingestion, food dilution, and transfer across trophic levels. Our study applied a community module using tritrophic food chain with zooplankton as prey, and a planktivorous seabass fry as predator. We conducted a series of feeding experiments and recorded the direct uptake of MP under six different concentrations ranging from 25 to 800 particles L-1. We also estimated the indirect transfer of MP via trophic link. The ingestion rates for Brachionus plicatilis, Mesocyclops isabellae, and Lates calcarifer, were 3.7 ± 0.3 MP ind-1 min-1, 1.69 ± 0.1 MP ind-1 min-1, and 3.51 ± 0.52 MP ind-1 h-1, respectively. In the presence of a natural diet, rotifers and copepods ingested significantly lower number, whereas, fish fry ingested a higher number of MP, suggesting further vulnerability to the consumers of MP-contaminated fish and potential biomagnification at higher trophic levels. Overall, the MP uptake rate increased with increasing concentration, and finally leveled off, indicating a type II functional response to MP concentration. The presence of natural diet led to a lower Km value. In the indirect transfer experiment, 74 % of B. plicatilis and 78 % of M. isabellae individuals were contaminated with MP, when offered as prey. Brachionid mastax and MP particles were observed in the gut of copepods. The fish fry gut content also recorded brachionid mastax, MP-contaminated copepods, and MP particles, showing direct evidence of trophic transfer pointing to a cascading effect on higher trophic levels including humans via piscivory.


Subject(s)
Food Chain , Microplastics , Water Pollutants, Chemical , Zooplankton , Animals , Zooplankton/physiology , Diet , Environmental Monitoring , Copepoda/physiology , Rotifera/physiology
18.
Sci Total Environ ; 950: 175302, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111422

ABSTRACT

Sandy beach ecosystems are particularly affected by plastic pollution. Supralittoral amphipods are important components of the food web in sandy beaches and their ability to ingest microplastics and bioplastics has been assessed. Chitosan, a polysaccharide obtained by deacetylation of chitin, the second most abundant polymer in the world, represents an interesting component to produce novel bioplastics in combination with other biopolymers like starch. Here, the possibility of ingesting chitosan-starch blends and the possible effects on the amphipod Talitrus saltator were investigated. Groups of adult individuals were fed with sheets containing mixtures of chitosan and starch in different percentages for 7 and 14 days. The results showed that chitosan ingestion is dependent on the percentage of starch present in the mixture. Moreover, FTIR analyses of both sheets and faecal pellets after consumption show that chitosan is not digested. Furthermore, the survival rate of amphipods fed with a mixture of chitosan and starch decreases after one week compared to the control groups (100 % starch and paper), and drops drastically to 0 % after two weeks the experiment began. In addition, consumption of 100 % chitosan is negligible. Therefore, the results of the experimental observations evidenced that chitosan is avoided as food resource and its consumption significantly affects the survival capacity of T. saltator. It is emphasized that the release of mixtures of chitosan and starch into the marine environment appears to be dangerous for littoral amphipods.


Subject(s)
Amphipoda , Chitosan , Starch , Water Pollutants, Chemical , Animals , Amphipoda/physiology , Amphipoda/drug effects , Microplastics , Food Chain
19.
Sci Total Environ ; 950: 175211, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111423

ABSTRACT

Squid species, as a burgeoning global food source, has garnered significant concerns due to expanding fisheries and little regulation. Elucidating the dynamics of squid fisheries and their biophysical coupling mechanisms is crucial for predicting spatiotemporal variations in squid fisheries and their sustainable management. Mesoscale eddies are discrete rotating oceanographic features that dominate local environmental variations and have been shown to modulate top predators. However, given controls of both predators and environmental factors, it remains unknown how eddies impact mid-trophic level species such as squids. Using satellite-based global squid fishery datasets, we showed an inverse latitudinal pattern of eddy-induced squid fisheries, where fishing activities are aggregated in (repelled from) cyclonic (anticyclonic) eddy cores in tropical waters and anticyclonic (cyclonic) eddy cores in temperate waters, and this pattern can be significantly enhanced with increasing eddy amplitude. Regarding solely the satellite-based global squid fisheries, eddy-induced environmental variations may generate a trade-off between food intake and energy expenditure, causing these oceanic squids to prefer cool cyclonic eddies in hot but food-limited waters, and warm anticyclonic eddies in nutritious but heat-limited waters. Given that eddy activity is projected to continuously enhance under global warming, our finding of eddy-driven bottom-up control for squid fisheries highlights an increasingly important hotspot for squid stock predictions and ecosystem-based ocean management in a changing climate.


Subject(s)
Decapodiformes , Fisheries , Animals , Ecosystem , Food Chain , Global Warming
20.
Sci Total Environ ; 950: 175280, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39122032

ABSTRACT

In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Phytoplankton , Phytoplankton/drug effects , Particulate Matter/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Ecosystem , Food Chain , Air Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL