Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.525
Filter
1.
Food Res Int ; 190: 114550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945594

ABSTRACT

Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.


Subject(s)
Aspergillus flavus , Edible Grain , Fusarium , Ultraviolet Rays , Fusarium/radiation effects , Fusarium/growth & development , Aspergillus flavus/growth & development , Aspergillus flavus/radiation effects , Edible Grain/microbiology , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Food Contamination/prevention & control , Food Irradiation/methods , Food Microbiology , Reactive Oxygen Species/metabolism
2.
Food Res Int ; 190: 114607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945617

ABSTRACT

Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.


Subject(s)
Chickens , Eggs , Food Microbiology , Lactuca , Meat , Salmonella Phages , Salmonella enteritidis , Lactuca/microbiology , Animals , Eggs/microbiology , Eggs/virology , Chickens/microbiology , Salmonella enteritidis/virology , Meat/microbiology , Food Safety , Food Contamination/prevention & control , Virulence
3.
Toxins (Basel) ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38922147

ABSTRACT

Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.


Subject(s)
Biological Control Agents , Triticum , Zearalenone , Zearalenone/metabolism , Zearalenone/toxicity , Triticum/microbiology , Biological Control Agents/metabolism , Streptomyces/metabolism , Actinobacteria/metabolism , Food Contamination/prevention & control , Tandem Mass Spectrometry
4.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922171

ABSTRACT

Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.


Subject(s)
Food Contamination , Ochratoxins , Wine , Ochratoxins/analysis , Wine/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Animals , Humans
5.
J Agric Food Chem ; 72(26): 14481-14497, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897919

ABSTRACT

Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.


Subject(s)
Aflatoxin B1 , Agriculture , Food Contamination , Phytochemicals , Aflatoxin B1/metabolism , Aflatoxin B1/chemistry , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Animals , Humans , Food Contamination/analysis , Food Contamination/prevention & control , Inactivation, Metabolic , Food Safety , Food Technology
6.
Int J Food Microbiol ; 421: 110777, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38909488

ABSTRACT

Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.


Subject(s)
Cronobacter sakazakii , Food Microbiology , Cronobacter sakazakii/growth & development , Food Contamination/prevention & control , Food Contamination/analysis , Humans , Dairy Products/microbiology , Food Handling/methods , Biofilms/growth & development , Animals
7.
Int J Food Microbiol ; 421: 110779, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852216

ABSTRACT

Airborne microorganisms in food processing environments pose a potential risk for food product contamination. Yet, the absence of established standards or guidelines setting quantitative limits on airborne microorganisms underscores a critical gap in current regulatory frameworks. This review seeks to explore the feasibility of establishing quantitative limits for airborne microorganisms in food processing facilities, aiming to provide evidence-based guidance to enhance food safety practices in the industry. The review begins by addressing the complexities of microbial air quality in the food industry through a general literature search covering sources of airborne microorganisms, factors affecting particle deposition, air sampling methods and preventive measures. Subsequently, it employs a structured approach to assess the significance of air quality and its impact on product quality. Utilizing the PRISMA method, relevant scientific literature from May 2002 to May 2022 was examined, resulting in 26 articles meeting inclusion criteria from a pool of 11,737 original research papers. Additionally, the review investigates existing probability models for assessing airborne contamination to enhance air quality risk assessment in food safety management systems. The literature reveals a lack of substantial evidence supporting a direct correlation between airborne microorganisms and food contamination. The absence of standardized air sampling methodologies in previous studies hinders the comparability and reliability of research findings. Additionally, the literature fails to establish a conclusive relationship between influencing factors such as total particle counts, temperature, relative humidity and airborne contamination. Contradictory probability models for quantifying airborne contamination, and the absence of tailored preventive measures, hinder effective control and undermine microbial contamination control in diverse food processing contexts. In conclusion, the development of numeric guidelines for airborne contamination necessitates a tailored approach, considering factors such as product characteristics and production context. By integrating risk assessment models into this process, a more thorough comprehension of contamination risks can be achieved, providing tailored guidance based on the identified risk levels for each product. Ongoing collaborative efforts are essential to develop evidence-based guidelines that effectively mitigate risks without incurring unnecessary costs.


Subject(s)
Air Microbiology , Air Microbiology/standards , Food Safety , Guidelines as Topic , Food Handling/standards , Food Handling/methods , Humans , Food Industry/standards , Food Microbiology/standards , Food Contamination/prevention & control , Food Contamination/analysis , Risk Assessment , Bacteria/isolation & purification , Bacteria/growth & development
8.
Int J Food Microbiol ; 421: 110778, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38861847

ABSTRACT

Bacillus cereus is a foodborne pathogen that induces vomiting and diarrhea in affected individuals. It exhibits resistance to traditional sterilization methods and has a high contamination rate in dairy products and rice. Therefore, the development of a new food safety controlling strategy is necessary. In this research, we isolated and identified a novel phage named vB_BceP_LY3, which belongs to a new genus of the subfamily Northropvirinae. This phage demonstrates a short latency period and remains stable over a wide range of temperatures (4-60 °C) and pH levels (4-11). The 28,124 bp genome of LY3 does not contain any antibiotic-resistance genes or virulence factors. With regards to its antibacterial properties, LY3 not only effectively inhibits the growth of B. cereus in TSB (tryptic soy broth), but also demonstrates significant inhibitory effects in various food matrices. Specifically, LY3 treatment at 4 °C with a high MOI (MOI = 10,000) can maintain B. cereus levels below the detection limit for up to 24 h in milk. LY3 represents a safe and promising biocontrol agent against B. cereus, possessing long-term antibacterial capabilities and stability.


Subject(s)
Bacillus cereus , Food Microbiology , Milk , Oryza , Oryza/microbiology , Bacillus cereus/virology , Milk/microbiology , Animals , Genome, Viral , Food Contamination/prevention & control , Food Contamination/analysis , Bacillus Phages/genetics , Bacillus Phages/isolation & purification , Bacillus Phages/classification , Bacillus Phages/physiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology
9.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878705

ABSTRACT

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Subject(s)
Daucus carota , Listeria monocytogenes , Ultraviolet Rays , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/radiation effects , Daucus carota/microbiology , Food Microbiology , Staphylococcus aureus/drug effects , Food Contamination/prevention & control , Food Contamination/analysis , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Escherichia coli O157/growth & development , Salmonella enterica/drug effects , Salmonella enterica/radiation effects , Salmonella enterica/growth & development
10.
Food Res Int ; 188: 114439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823829

ABSTRACT

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Subject(s)
Edible Grain , Food Contamination , Infant Food , Tandem Mass Spectrometry , Edible Grain/chemistry , Hydrogen-Ion Concentration , Infant Food/analysis , Food Contamination/prevention & control , Tropanes/chemistry , Tropanes/analysis , Temperature , Alkaloids/analysis , Humans , Food Handling/methods , Hot Temperature , Atropine/analysis , Atropine/chemistry , Infant , Chromatography, High Pressure Liquid
11.
J Microorg Control ; 29(2): 91-97, 2024.
Article in English | MEDLINE | ID: mdl-38880621

ABSTRACT

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Subject(s)
Campylobacter jejuni , Chickens , Disinfection , Meat , Sodium Hypochlorite , Ultraviolet Rays , Campylobacter jejuni/drug effects , Campylobacter jejuni/radiation effects , Animals , Sodium Hypochlorite/pharmacology , Ultraviolet Rays/adverse effects , Disinfection/methods , Meat/microbiology , Disinfectants/pharmacology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Food Microbiology , Food Contamination/prevention & control
12.
Food Microbiol ; 122: 104559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839223

ABSTRACT

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Subject(s)
Camelus , Cheese , Food Storage , Gelatin , Listeria monocytogenes , Nanocomposites , Zinc Oxide , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Cheese/microbiology , Gelatin/chemistry , Gelatin/pharmacology , Animals , Nanocomposites/chemistry , Food Preservation/methods , Meat/microbiology , Food Microbiology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pomegranate/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Rosmarinus/chemistry , Refrigeration , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Food Microbiol ; 122: 104544, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839230

ABSTRACT

The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.


Subject(s)
Enterohemorrhagic Escherichia coli , Fragaria , Fruit , Hot Temperature , Fruit/microbiology , Fragaria/microbiology , Enterohemorrhagic Escherichia coli/growth & development , Food Microbiology , Colony Count, Microbial , Microbial Viability , Plant Nectar/chemistry , Escherichia coli O157/growth & development , Food Contamination/analysis , Food Contamination/prevention & control , Kinetics
14.
Food Microbiol ; 122: 104545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839231

ABSTRACT

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Subject(s)
Aspergillus niger , Hot Temperature , Aspergillus niger/growth & development , Hydrogen-Ion Concentration , Carbon Dioxide/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Alicyclobacillus/growth & development , Alicyclobacillus/physiology , Carbonated Beverages/microbiology , Byssochlamys/growth & development , Food Microbiology , Zygosaccharomyces/growth & development , Zygosaccharomyces/physiology , Food Contamination/analysis , Food Contamination/prevention & control , Culture Media/chemistry , Culture Media/metabolism
15.
Compr Rev Food Sci Food Saf ; 23(4): e13377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865251

ABSTRACT

Climate change and changing consumer demand are the main factors driving the protein transition. This shift toward more sustainable protein sources as alternatives to animal proteins is also reflected in the rapid upscaling of meat and dairy food analogues. Such changes could challenge food safety, as new food sources could result in new and unexpected food safety risks for consumers. This review analyzed the current knowledge on chemical and microbiological contamination of emerging alternative protein sources of plant origin, including soil-based (faba bean, mung bean, lentils, black gram, cowpea, quinoa, hemp, and leaf proteins) and aquatic-based (microalgae and duckweeds) proteins. Moreover, findings on commercial analogues from known alternative protein sources were included. Overall, the main focus of the investigations is on the European context. The review aimed to enable foresight approaches to food safety concerning the protein transition. The results indicated the occurrence of multiple chemical and microbiological hazards either in the raw materials that are the protein sources and eventually in the analogues. Moreover, current European legislation on maximum limits does not address most of the "contaminant-food" pairs identified, and no legislative framework has been developed for analogues. Results of this study provide stakeholders with a more comprehensive understanding of the chemical and microbiological safety of alternative protein sources and derived analogues to enable a holistic and safe approach to the protein transition.


Subject(s)
Food Contamination , Food Safety , Food Contamination/prevention & control , Food Contamination/analysis , Food Microbiology , Plant Proteins/chemistry , Animals
16.
J Agric Food Chem ; 72(25): 14229-14240, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38797952

ABSTRACT

Fusarium verticillioides (F. verticillioides) is a globally recognized and highly impactful fungal pathogen of maize, causing yield losses and producing harmful mycotoxins that pose a threat to human and animal health. However, the genetic tools available for studying this crucial fungus are currently limited in comparison to other important fungal pathogens. To address this, an efficient CRISPR/Cas9 genome editing system based on an autonomously replicating plasmid with an AMA1 sequence was established in this study. First, gene disruption of pyrG and pyrE via nonhomologous end-joining (NHEJ) pathway was successfully achieved, with efficiency ranging from 66 to 100%. Second, precise gene deletions were achieved with remarkable efficiency using a dual sgRNA expression strategy. Third, the developed genome editing system can be applied to generate designer chromosomes in F. verticillioides, as evidenced by the deletion of a crucial 38 kb fragment required for fumonisin biosynthesis. Fourth, the pyrG recycling system has been established and successfully applied in F. verticillioides. Lastly, the developed ΔFUM1 and ΔFUM mutants can serve as biocontrol agents to reduce the fumonisin B1 (FB1) contamination produced by the toxigenic strain. Taken together, these significant advancements in genetic manipulation and biocontrol strategies provide valuable tools for studying and mitigating the impact of F. verticillioides on maize crops.


Subject(s)
CRISPR-Cas Systems , Fungal Proteins , Fusarium , Gene Editing , Mycotoxins , Zea mays , Fusarium/genetics , Fusarium/metabolism , Gene Editing/methods , Zea mays/microbiology , Mycotoxins/metabolism , Mycotoxins/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fumonisins/metabolism , Food Contamination/analysis , Food Contamination/prevention & control
17.
Int J Food Microbiol ; 420: 110766, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38815343

ABSTRACT

During postharvest, table grapes are often spoiled by molds. Aspergillus sp., Alternaria sp., Botrytis sp., Cladosporium sp. and Penicillium sp. are different mold genera frequently related to table grape rot. Fungal spoilage affects nutritional value and organoleptic properties while also producing health hazards, such as mycotoxins. Traditionally, synthetic fungicides have been employed to control fungal diseases. However, possible negative effects on health and the environment are a serious concern for consumers and government entities. This review summarized data on innovative strategies proposed to diminish postharvest losses and extend table grape shelf life. Among physical, chemical, and biological strategies, either alone or in combination, the integrated management of fungal diseases is a sustainable alternative to synthetic fungicides. However, to date, only a few alternative technologies have succeeded on a commercial scale. Recent research aimed at increasing the competitiveness of alternative technologies has led to the development of integrated management strategies to prevent postharvest decay and increase the safety and quality of table grapes.


Subject(s)
Food Preservation , Fungi , Vitis , Vitis/microbiology , Food Preservation/methods , Food Microbiology , Food Contamination/prevention & control
18.
Int J Antimicrob Agents ; 64(1): 107194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723695

ABSTRACT

OBJECTIVE: This study intended to isolate a Vibrio-particular phage from the natural environment, analyse its characteristics and genome sequence, and investigate its reduction effect on V. parahaemolyticus biofilm as a biocontrol agent in squid and mackerel. METHODS: Among 21 phages, phage CAU_VPP01, isolated from beach mud, was chosen for further experiments based on host range and EOP tests. When examining the reduction effect of phage CAU_VPP01 against Vibrio parahaemolyticus biofilms on surfaces (stainless steel [SS] and polyethylene terephthalate [PET]) and food surfaces (squid and mackerel). RESULTS: The phage showed the most excellent reduction effect at a multiplicity-of-infection (MOI) 10. Three-dimensional images acquired with confocal laser scanning microscopy (CLSM) analysis were quantified using COMSTAT, which showed that biomass, average thickness, and roughness coefficient decreased when treated with the phage. Colour and texture analysis confirmed that the quality of squid and mackerel was maintained after the phage treatment. Finally, a comparison of gene expression levels determined by qRT-PCR analysis showed that the phage treatment induced a decrease in the gene expression of flaA, vp0962, andluxS, as examples. CONCLUSION: This study indicated that Vibrio-specific phage CAU_VPP01 effectively controlled V. parahaemolyticus biofilms under various conditions and confirmed that the isolated phage could possibly be used as an effective biocontrol weapon in the seafood manufacturing industry.


Subject(s)
Bacteriophages , Biofilms , Seafood , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virology , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/genetics , Seafood/microbiology , Animals , Decapodiformes/microbiology , Perciformes/microbiology , Food Contamination/prevention & control , Host Specificity , Biological Control Agents
19.
Toxicon ; 244: 107770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768829

ABSTRACT

Aflatoxins are toxic compounds produced by certain molds, primarily Aspergillus species, which can contaminate crops such as grains and nuts. These toxins pose a significant health risk to animals and humans. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to diminished growth and feed efficiency by disrupting nutrient absorption and metabolism in poultry. AFB1 can trigger apoptosis and inflammation, leading to a decline in immune function and changes in blood biochemistry in poultry. Recently, there has been growing interest in using microalgae as a natural antioxidant to mitigate the effects of aflatoxins in poultry diets. Microalgae have strong antioxidant, antimicrobial, anti-apoptotic, and anti-inflammatory properties, and adding them to aflatoxin-contaminated poultry diets has been shown to improve growth and overall health. This review investigates the potential of microalgae, such as Spirulina platensis, Chlorella vulgaris, and Enteromorpha prolifera, to mitigate AFB1 contamination in poultry feeds. These microalgae contain substantial amounts of bioactive compounds, including polysaccharides, peptides, vitamins, and pigments, which possess antioxidant, antimicrobial, and detoxifying properties. Microalgae can bind to aflatoxins and prevent their absorption in the gastrointestinal tract of poultry. They can also enhance the immune system of poultry, making them more resilient to the toxic effects of AFB1. Based on the data collected, microalgae have shown promising results in combating AFB1 contamination in poultry feeds. They can bind to aflatoxins, boost the immune system, and improve feed quality. This review emphasizes the harmful effects of AFB1 on poultry and the promising role of microalgae in reducing these effects.


Subject(s)
Aflatoxin B1 , Animal Feed , Microalgae , Poultry , Animals , Aflatoxin B1/toxicity , Food Contamination/prevention & control , Antioxidants/pharmacology , Spirulina , Aflatoxins/toxicity
20.
Int J Biol Macromol ; 270(Pt 2): 132248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729502

ABSTRACT

The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.


Subject(s)
Aflatoxin B1 , Antifungal Agents , Aspergillus flavus , Carum , Chitosan , Emulsions , Oils, Volatile , Chitosan/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Emulsions/chemistry , Carum/chemistry , Aspergillus flavus/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Food Contamination/prevention & control , Antioxidants/pharmacology , Antioxidants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...