Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.481
Filter
1.
A A Pract ; 18(7): e01798, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949223

ABSTRACT

Prolonged acute postsurgical pain (PAPSP) contributes to the development of chronic postsurgical pain, impaired rehabilitation, longer hospital stays, and decreased quality of life. For upper extremity analgesia, the duration of postoperative pain management with continuous brachial plexus peripheral nerve blocks is limited due to the risk of infection. Ultrasound-guided percutaneous cryoneurolysis provides extended analgesia and avoids the risks and inconveniences of indwelling catheters. We present 2 cases of PAPSP of the forearm effectively managed by the use of ultrasound-guided percutaneous cryoneurolysis to treat the medial, lateral, and posterior antebrachial cutaneous nerves.


Subject(s)
Forearm , Pain, Postoperative , Ultrasonography, Interventional , Humans , Forearm/surgery , Forearm/innervation , Pain, Postoperative/therapy , Middle Aged , Female , Male , Pain Management/methods , Cryosurgery/methods , Adult , Aged
2.
Skin Res Technol ; 30(7): e13830, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951871

ABSTRACT

BACKGROUND: Consumer products such as electrical shavers exert a combination of dynamic loading in the form of pressure and shear on the skin. This mechanical stimulus can lead to discomfort and skin tissue responses characterised as "Skin Sensitivity". To minimise discomfort following shaving, there is a need to establish specific stimulus-response relationships using advanced tools such as optical coherence tomography (OCT). OBJECTIVE: To explore the spatial and temporal changes in skin morphology and microvascular function following an electrical shaving stimulus. METHODS: Ten healthy male volunteers were recruited. The study included a 60-s electrical shaving stimulus on the forearm, cheek and neck. Skin parameters were recorded at baseline, 20 min post stimulus and 24 h post stimulus. Structural and dynamic skin parameters were estimated using OCT, while transepidermal water loss (TEWL) was recorded to provide reference values for skin barrier function. RESULTS: At baseline, six of the eight parameters revealed statistically significant differences between the forearm and the facial sites, while only surface roughness (Rq) and reflectivity were statistically different (p < 0.05) between the cheek and neck. At 20 min post shaving, there was a significant increase in the TEWL values accompanied by increased blood perfusion, with varying magnitude of change dependent on the anatomical site. Recovery characteristics were observed 24 h post stimulus with most parameters returning to basal values, highlighting the transient influence of the stimulus. CONCLUSIONS: OCT parameters revealed spatial and temporal differences in the skin tissue response to electrical shaving. This approach could inform shaver design and prevent skin sensitivity.


Subject(s)
Skin , Tomography, Optical Coherence , Humans , Male , Tomography, Optical Coherence/methods , Adult , Skin/blood supply , Skin/diagnostic imaging , Forearm/blood supply , Young Adult , Microvessels/diagnostic imaging , Microvessels/physiology , Cheek/blood supply , Cheek/diagnostic imaging , Water Loss, Insensible/physiology , Healthy Volunteers , Skin Physiological Phenomena , Electric Stimulation , Neck/diagnostic imaging , Neck/blood supply , Microcirculation/physiology
3.
Mymensingh Med J ; 33(3): 772-776, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38944720

ABSTRACT

Soft tissue injuries of the hand or forearm often results in exposure of tendon or bone which needs coverage with a suitable flap. This prospective observational study was carried out in National Institute of Traumatology and Orthopaedic Rehabilitation (NITOR), Dhaka, Bangladesh from February 2019 to January 2020, to evaluate the use of the pedicled paraumbilical perforator flaps as a reliable flap to cover such defects. Total 34 patients having soft tissue defects in the hand and forearm with exposed tendons, bones or implant were included in this study. All the defects were covered by paraumbilical perforator flap. The defects were caused by road traffic accident (n=22), machinery injury (n=10) and burn injury (n=2). Sixteen patients had defects involving the forearm, six over dorsum of hand, another two over first web space and the rest had defects over two or more areas of forearm, hand and wrist. Lateral extent of flaps was upto anterior axillary line in 41.18% cases and upto mid-axillary line in 55.88% cases. Flap division and final inset was done in second stage after 3 weeks. Donor site closed primarily in all cases, except in two cases where it was covered by skin graft. All the flaps survived with no incidence of flap necrosis, dehiscence or infection after first stage. However, after the division of the flap, two patients developed marginal necrosis of the proximal margin which healed spontaneously by conservative treatment. The mean flap surface area utilized was 108 cm2. Donor area healed well without any major complications. Three patients developing scar hypertrophy were treated with intra-lesional triamcinolone injections. The paraumbilical perforator flap is a reliable option to cover soft tissue defects of hand and forearm due to easier planning and harvesting of the flap, adequate skin paddle and minimum donor site morbidity.


Subject(s)
Hand Injuries , Perforator Flap , Soft Tissue Injuries , Humans , Perforator Flap/transplantation , Male , Soft Tissue Injuries/surgery , Female , Adult , Prospective Studies , Hand Injuries/surgery , Middle Aged , Forearm/surgery , Adolescent , Forearm Injuries/surgery , Young Adult , Plastic Surgery Procedures/methods , Child
4.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38844346

ABSTRACT

In measurement, a reference frame is needed to compare the measured object to something already known. This raises the neuroscientific question of which reference frame is used by humans when exploring the environment. Previous studies suggested that, in touch, the body employed as measuring tool also serves as reference frame. Indeed, an artificial modification of the perceived dimensions of the body changes the tactile perception of external object dimensions. However, it is unknown if such a change in tactile perception would occur when the body schema is modified through the illusion of owning a limb altered in size. Therefore, employing a virtual hand illusion paradigm with an elongated forearm of different lengths, we systematically tested the subjective perception of distance between two points [tactile distance perception (TDP) task] on the corresponding real forearm following the illusion. Thus, the TDP task is used as a proxy to gauge changes in the body schema. Embodiment of the virtual arm was found significantly greater after the synchronous visuotactile stimulation condition compared with the asynchronous one, and the forearm elongation significantly increased the TDP. However, we did not find any link between the visuotactile-induced ownership over the elongated arm and TDP variation, suggesting that vision plays the main role in the modification of the body schema. Additionally, significant effect of elongation found on TDP but not on proprioception suggests that these are affected differently by body schema modifications. These findings confirm the body schema malleability and its role as a reference frame in touch.


Subject(s)
Distance Perception , Illusions , Touch Perception , Virtual Reality , Humans , Female , Male , Touch Perception/physiology , Young Adult , Adult , Illusions/physiology , Distance Perception/physiology , Proprioception/physiology , Body Image , Forearm/physiology
5.
J Biomech ; 171: 112196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924964

ABSTRACT

Lumbrical muscles originate on the flexor digitorum profundus (FDP) tendons and, during fist making, they move in the same direction when FDP muscle produces maximal proximal tendon gliding. Injuries of the bipennate lumbricals have been described when a shear force acts between the origins on adjacent tendons of the FDP, as they glide in opposite directions in asymmetric hand postures. Other structures of the deep flexors complex can be affected during this injury mechanism, due to the so-called quadriga effect, which can commonly occur during sport climbing practise. Biomechanical studies are needed to better understand the pathomechanism. A cadaveric study was designed to analyse the effects of load during the fourth lumbrical muscle injury mechanism. The amount of FDP tendon gliding and metacarpophalangeal (MCP) joint flexion of the 5th finger were calculated. Ten fresh-frozen cadaveric specimens (ten non-paired forearms and hands) were used. The specimens were placed on a custom-made loading apparatus. The FDP of the 5th finger was loaded, inducing isolated flexion of the 5th finger, until rupture. The rupture occurred in all specimens, under a load of 11 kg (SD 4.94), at 9.23 mm of proximal tendon gliding (SD 3.55) and at 21.4° (SD 28.91) of MCP joint flexion. Lumbrical muscle detachment from the 4th FDP was observed, from distal to proximal, and changes in FDP tendons at the distal forearm level too. The quadriga effect can lead to injury of the bipennate lumbrical muscles and the deep flexors complex in the hand and forearm.


Subject(s)
Cadaver , Muscle, Skeletal , Tendons , Humans , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Tendons/physiopathology , Tendons/physiology , Biomechanical Phenomena , Male , Mountaineering/physiology , Middle Aged , Aged , Tendon Injuries/physiopathology , Female , Forearm/physiopathology , Forearm/physiology , Rupture/physiopathology , Metacarpophalangeal Joint/physiopathology , Metacarpophalangeal Joint/injuries , Models, Biological
6.
J Sports Sci Med ; 23(2): 396-409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841629

ABSTRACT

Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.


Subject(s)
Electromyography , Exercise Test , Forearm , Hand Strength , Muscle, Skeletal , Pronation , Humans , Male , Forearm/physiology , Hand Strength/physiology , Adult , Muscle, Skeletal/physiology , Young Adult , Biomechanical Phenomena , Pronation/physiology , Exercise Test/methods , Supination/physiology , Muscle Fatigue/physiology , Physical Exertion/physiology , Arm/physiology , Upper Extremity/physiology
7.
J Bodyw Mov Ther ; 39: 176-182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876623

ABSTRACT

INTRODUCTION: Pain sensitivity is the main finding of central sensitization (CS) and can occur in patients with chronic shoulder pain. However, there is limited evidence concerning the distribution of pain sensitivity in shoulders, forearms, and legs in patients with CS associated with chronic shoulder pain. The present study aimed to determine the distribution of pain sensitivity in patients with CS associated with chronic subacromial pain syndrome (SPS). METHOD: This cross-sectional study included 58 patients with chronic SPS and CS (patient group) and 58 healthy participants (control group). The presence of CS was determined using the Central Sensitization Inventory (CSI). To determine the distribution of pain sensitivity, pressure pain threshold (PPT) measurements were performed from the shoulders, forearms, and legs. RESULTS: There was no significant difference between the two groups in terms of sociodemographic data (p > 0.05). The patient group had a significantly higher CSI score (p < 0.001) and lower PPTs in all regions (p < 0.05) than the control group. Unlike the control group, the patient group had lower PPTs on the affected side for the shoulder [mean difference (MD) 95% confidence interval (CI): 1.2 (-1.7 to -0.6)], forearm [MD 95% CI: 1.1 (-1.7 to -0.6)], and leg [MD 95% CI: 0.9 (-1.4 to -0.3)] compared with the contralateral side (p < 0.001). CONCLUSION: Pain sensitivity is more pronounced in the affected shoulder and the forearm and leg located on this side than in those on the contralateral side in patients with CS associated with chronic SPS.


Subject(s)
Central Nervous System Sensitization , Chronic Pain , Pain Threshold , Humans , Cross-Sectional Studies , Female , Male , Central Nervous System Sensitization/physiology , Middle Aged , Adult , Pain Threshold/physiology , Chronic Pain/physiopathology , Shoulder Pain/physiopathology , Shoulder Impingement Syndrome/physiopathology , Pain Measurement , Forearm/physiopathology , Leg/physiopathology
8.
PLoS One ; 19(6): e0305539, 2024.
Article in English | MEDLINE | ID: mdl-38885214

ABSTRACT

The human forearm model is commonly employed in physiological investigations exploring local vascular function and oxygen delivery; however, the effect of arm dominance on exercising forearm hemodynamics and skeletal muscle oxygen saturation (SmO2) in untrained individuals is poorly understood. Therefore, the purpose of this study was to explore the effect of self-identified arm dominance on forearm hemodynamics and SmO2 in untrained individuals during submaximal, non-ischemic forearm exercise. Twenty healthy individuals (23±4 years, 50% female; 80% right-handed) completed three-minute bouts of supine rhythmic (1 second contraction: 2 second relaxation duty cycle) forearm handgrip exercise at both absolute (10kg; 98N) and relative (30% of maximal voluntary contraction) intensities in each forearm. Beat-by-beat measures of forearm blood flow (FBF; ml/min), mean arterial blood pressure (MAP; mmHg) and flexor digitorum superficialis SmO2 (%) were obtained throughout and averaged during the final 30 seconds of rest, exercise, and recovery while forearm vascular conductance was calculated (FVC; ml/min/100mmHg). Data are Δ from rest (mean±SD). Absolute force production did not differ between non-dominant and dominant arms (97±11 vs. 98±13 N, p = 0.606) whereas relative force production in females did (69±24 vs. 82±25 N, p = 0.001). At both exercise intensities, FBFRELAX, FVCRELAX, MAPRELAX, and the time constant tau for FBF and SmO2 were unaffected by arm dominance (all p>0.05). While arm dominance did not influence SmO2 during absolute intensity exercise (p = 0.506), the non-dominant arm in females experienced an attenuated reduction in SmO2 during relative intensity exercise (-14±10 vs. -19±8%, p = 0.026)-though exercise intensity was also reduced (p = 0.001). The present investigation has demonstrated that arm dominance in untrained individuals does not impact forearm hemodynamics or SmO2 during handgrip exercise.


Subject(s)
Exercise , Forearm , Hemodynamics , Muscle, Skeletal , Humans , Female , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Forearm/blood supply , Forearm/physiology , Hemodynamics/physiology , Male , Exercise/physiology , Adult , Young Adult , Hand Strength/physiology , Arm/physiology , Arm/blood supply , Regional Blood Flow/physiology , Oxygen/metabolism , Oxygen Consumption/physiology
9.
J Strength Cond Res ; 38(7): e349-e358, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900183

ABSTRACT

ABSTRACT: Montgomery, TR Jr, Olmos, A, Sears, KN, Succi, PJ, Hammer, SM, Bergstrom, HC, Hill, EC, Trevino, MA, and Dinyer-McNeely, TK. Influence of blood flow restriction on neuromuscular function and fatigue during forearm flexion in men. J Strength Cond Res 38(7): e349-e358, 2024-To determine the effects of blood flow restriction (BFR) on the mean firing rate (MFR) and motor unit action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during fatiguing isometric elbow flexions. Ten men (24.5 ± 4.0 years) performed isometric trapezoidal contractions at 50% maximum voluntary contraction to task failure with or without BFR, on 2 separate days. For BFR, a cuff was inflated to 60% of the pressure required for full brachial artery occlusion at rest. During both visits, surface electromyography was recorded from the biceps brachii of the dominant limb and the signal was decomposed. A paired-samples t test was used to determine the number of repetitions completed between BFR and CON. ANOVAs (repetition [first, last] × condition [BFR, CON]) were used to determine differences in MFR vs. RT and MUAPAMP vs. RT relationships. Subjects completed more repetitions during CON (12 ± 4) than BFR (9 ± 2; p = 0.012). There was no significant interaction (p > 0.05) between the slopes and y-intercepts during the repetition × condition interaction for MUAPAMP vs. MFR. However, there was a main effect of repetition for the slopes of the MUAPAMP vs. RT (p = 0.041) but not the y-intercept (p = 0.964). Post hoc analysis (collapsed across condition) indicated that the slopes of the MUAPAMP vs. RT during the first repetition was less than the last repetition (first: 0.022 ± 0.003 mv/%MVC; last: 0.028 ± 0.004 mv/%MVC; p = 0.041). Blood flow restriction resulted in the same amount of higher threshold MU recruitment in approximately 75% of the repetitions. Furthermore, there was no change in MFR for either condition, even when taken to task failure. Thus, BFR training may create similar MU responses with less total work completed than training without BFR.


Subject(s)
Electromyography , Forearm , Isometric Contraction , Muscle Fatigue , Muscle, Skeletal , Regional Blood Flow , Humans , Male , Muscle Fatigue/physiology , Adult , Isometric Contraction/physiology , Forearm/blood supply , Forearm/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Regional Blood Flow/physiology , Blood Flow Restriction Therapy
10.
BMC Musculoskelet Disord ; 25(1): 429, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824539

ABSTRACT

This article reports a case of a female patient admitted with swelling and subcutaneous mass in the right forearm, initially suspected to be multiple nerve fibroma. However, through preoperative imaging and surgery, the final diagnosis confirmed superficial thrombophlebitis. This condition resulted in entrapment of the radial nerve branch, leading to noticeable nerve entrapment and radiating pain. The surgery involved the excision of inflammatory tissue and thrombus, ligation of the cephalic vein, and complete release of the radial nerve branch. Postoperative pathology confirmed the presence of Superficial Thrombophlebitis. Through this case, we emphasize the importance of comprehensive utilization of clinical, imaging, and surgical interventions for more accurate diagnosis and treatment. This is the first clinical report of radial nerve branch entrapment due to superficial thrombophlebitis.


Subject(s)
Forearm , Nerve Compression Syndromes , Radial Nerve , Thrombophlebitis , Humans , Female , Thrombophlebitis/surgery , Thrombophlebitis/etiology , Thrombophlebitis/diagnosis , Nerve Compression Syndromes/etiology , Nerve Compression Syndromes/surgery , Forearm/innervation , Forearm/blood supply , Forearm/surgery , Radial Nerve/surgery , Radial Neuropathy/etiology , Radial Neuropathy/surgery , Middle Aged
11.
PeerJ ; 12: e17403, 2024.
Article in English | MEDLINE | ID: mdl-38827299

ABSTRACT

Background: Effective rehabilitation of upper limb musculoskeletal disorders requires multimodal assessment to guide clinicians' decision-making. Furthermore, a comprehensive assessment must include reliable tests. Nevertheless, the interrelationship among various upper limb tests remains unclear. This study aimed to evaluate the reliability of easily applicable upper extremity assessments, including absolute values and asymmetries of muscle mechanical properties, pressure pain threshold, active range of motion, maximal isometric strength, and manual dexterity. A secondary aim was to explore correlations between different assessment procedures to determine their interrelationship. Methods: Thirty healthy subjects participated in two experimental sessions with 1 week between sessions. Measurements involved using a digital myotonometer, algometer, inclinometer, dynamometer, and the Nine-Hole Peg test. Intraclass correlation coefficients, standard error of the mean, and minimum detectable change were calculated as reliability indicators. Pearson's correlation was used to assess the interrelationship between tests. Results: For the absolute values of the dominant and nondominant sides, reliability was 'good' to 'excellent' for muscle mechanical properties, pressure pain thresholds, active range of motion, maximal isometric strength, and manual dexterity. Similarly, the reliability for asymmetries ranged from 'moderate' to 'excellent' across the same parameters. Faster performance in the second session was consistently found for the Nine-Hole Peg test. No systematic inter-session errors were identified for the values of the asymmetries. No significant correlations were found between tests, indicating test independence. Conclusion: These findings indicate that the sensorimotor battery of tests is reliable, while monitoring asymmetry changes may offer a more conservative approach to effectively tracking recovery of upper extremity injuries.


Subject(s)
Forearm , Hand , Range of Motion, Articular , Humans , Male , Female , Reproducibility of Results , Adult , Range of Motion, Articular/physiology , Hand/physiology , Forearm/physiology , Young Adult , Healthy Volunteers , Muscle, Skeletal/physiology , Pain Threshold/physiology
12.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931754

ABSTRACT

Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.


Subject(s)
Electromyography , Forearm , Gestures , Hand , Pattern Recognition, Automated , Humans , Electromyography/methods , Hand/physiology , Forearm/physiology , Pattern Recognition, Automated/methods , Male , Adult , Principal Component Analysis , Female , Algorithms , Movement/physiology , Young Adult , Support Vector Machine , Machine Learning
13.
Jt Dis Relat Surg ; 35(2): 448-454, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38727128

ABSTRACT

Several surgical procedures are used to treat dynamic pronation position of the forearm and flexion deformity of the wrist in cerebral palsy. Postoperative results of pronator teres rerouting were explored, while specially designed postoperative physiotherapy and its outcomes were limited. Herein, we present a case in whom the outcomes of electromyographic biofeedback (EMG-BF) training were assessed after pronator teres rerouting and brachioradialis tendon to extensor carpi radialis brevis tendon transfer combined with derotation osteotomy. The peak value increased, while the resting value decreased for the muscles after the intervention. Range of motion, hand function, manual ability, functional independence, and quality of life levels were improved. In conclusion, EMG biofeedback training may have a positive effect on neuromuscular control of pronator teres and brachioradialis. Free use of the upper extremity and improved manual ability positively affect the activity and quality of life of the patients.


Subject(s)
Cerebral Palsy , Muscle, Skeletal , Range of Motion, Articular , Tendon Transfer , Humans , Tendon Transfer/methods , Cerebral Palsy/surgery , Cerebral Palsy/rehabilitation , Cerebral Palsy/physiopathology , Muscle, Skeletal/surgery , Muscle, Skeletal/physiopathology , Male , Forearm/surgery , Electromyography , Quality of Life , Treatment Outcome , Biofeedback, Psychology/methods , Osteotomy/methods , Pronation/physiology , Recovery of Function/physiology
14.
Am J Physiol Heart Circ Physiol ; 327(1): H268-H274, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38787380

ABSTRACT

Brachial artery flow-mediated dilation (BAFMD) is induced by hyperemic wall shear rate (WSR) following forearm ischemia. In older adults, there appears to be a reduced brachial hyperemic WSR and altered stimulus-response relationship compared with young adults. However, it is unclear if an altered forearm microvascular response to ischemia influences brachial hyperemic WSR in older adults. We determined associations between brachial hyperemic WSR and forearm skeletal muscle oxygen saturation in young and older adults. Healthy young (n = 17, 29 ± 7 yr) and older (n = 32, 65 ± 4 yr) adults participated in the study. BAFMD by a multigate spectral Doppler system and forearm skeletal muscle oxygen saturation by near-infrared spectroscopy were concurrently measured. When compared with the young, older adults showed reduced oxygen extraction kinetics (OE, 0.15 [0.12-0.17] vs. 0.09 [0.05-0.12]%s-1) and magnitude (So2deficit, 3,810 ± 1,420 vs. 2,723 ± 1,240%s) during ischemia, as well as oxygen resaturation kinetics (So2slope, 2.5 ± 0.7 vs. 1.7 ± 0.7%s-1) upon reperfusion (all P < 0.05). When OE in the young and So2slope in older adults were stratified by their median values, young adults with OE above the median had greater hyperemic WSR parameters compared with those below the median (P < 0.05), but So2slope in older adults did not show clear differences in hyperemic WSR parameters between those above/below the median. This study demonstrates that, in addition to a reduced microvascular response to ischemia, there may be a dissociation between microvascular response to ischemia and brachial hyperemic WSR in older adults, which may result in a further impairment of BAFMD in this cohort.NEW & NOTEWORTHY Microvascular response to ischemia and subsequent reperfusion is diminished in older adults compared with the young. Furthermore, there appears to be a dissociation between the microvascular response to ischemia and brachial hyperemic WSR in older adults, which may further disturb the BAFMD process in this cohort. A reduced BAFMD in older adults may be a result of multiple alterations occurring both at macro- and microcirculation.


Subject(s)
Brachial Artery , Forearm , Hyperemia , Microcirculation , Muscle, Skeletal , Regional Blood Flow , Vasodilation , Humans , Brachial Artery/physiopathology , Brachial Artery/diagnostic imaging , Male , Female , Adult , Aged , Hyperemia/physiopathology , Hyperemia/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Middle Aged , Forearm/blood supply , Young Adult , Ischemia/physiopathology , Ischemia/metabolism , Age Factors , Blood Flow Velocity , Spectroscopy, Near-Infrared , Aging/metabolism , Aging/physiology , Oxygen Consumption , Oxygen Saturation , Microvessels/physiopathology , Microvessels/metabolism , Microvessels/diagnostic imaging
15.
J Cutan Pathol ; 51(8): 594-597, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38698729

ABSTRACT

A neurofibroma with focal glomus-like body differentiation is an unusual phenomenon recently encountered in an excision specimen from the right lateral distal forearm of a 26-year-old man. Glomus cells are modified smooth muscle cells normally present in glomus-like bodies but can also be found in glomus tumors (GT) or lesions considered in the spectrum of GT, including myopericytoma, myofibroma, and angiolipoma. Neurofibromas are peripheral nerve sheath tumors derived from the neural crest cells. While both GT and its variants and neurofibroma are thought to be derived from different cell types, there is growing evidence that glomus cells have a neural crest origin. This is based on multiple theories, with some overlapping pathways, including neural crest cell differentiation, Schwann cell reprogramming, VEGF expression, and NF1 gene biallelic inactivation. This report adds to the growing evidence of possible neural crest origin for glomus cells and would help explain finding glomus-like bodies scattered through a neurofibroma.


Subject(s)
Glomus Tumor , Neurofibroma , Humans , Male , Adult , Glomus Tumor/pathology , Glomus Tumor/metabolism , Glomus Tumor/genetics , Neurofibroma/pathology , Neurofibroma/metabolism , Neural Crest/pathology , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Schwann Cells/pathology , Schwann Cells/metabolism , Forearm/pathology
16.
Am J Physiol Heart Circ Physiol ; 327(1): H45-H55, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700474

ABSTRACT

Patients with heart failure with reduced ejection fraction (HFrEF) have exaggerated sympathoexcitation and impaired peripheral vascular conductance. Evidence demonstrating consequent impaired functional sympatholysis is limited in HFrEF. This study aimed to determine the magnitude of reduced limb vascular conductance during sympathoexcitation and whether functional sympatholysis would abolish such reductions in HFrEF. Twenty patients with HFrEF and 22 age-matched controls performed the cold pressor test (CPT) [left foot 2-min in -0.5 (1)°C water] alone and with right handgrip exercise (EX + CPT). Right forearm vascular conductance (FVC), forearm blood flow (FBF), and mean arterial pressure (MAP) were measured. Patients with HFrEF had greater decreases in %ΔFVC and %ΔFBF during CPT (both P < 0.0001) but not EX + CPT (P = 0.449, P = 0.199) compared with controls, respectively. %ΔFVC and %ΔFBF decreased from CPT to EX + CPT in patients with HFrEF (both P < 0.0001) and controls (P = 0.018, P = 0.015), respectively. MAP increased during CPT and EX + CPT in both groups (all P < 0.0001). MAP was greater in controls than in patients with HFrEF during EX + CPT (P = 0.025) but not CPT (P = 0.209). In conclusion, acute sympathoexcitation caused exaggerated peripheral vasoconstriction and reduced peripheral blood flow in patients with HFrEF. Handgrip exercise abolished sympathoexcitatory-mediated peripheral vasoconstriction and normalized peripheral blood flow in patients with HFrEF. These novel data reveal intact functional sympatholysis in the upper limb and suggest that exercise-mediated, local control of blood flow is preserved when cardiac limitations that are cardinal to HFrEF are evaded with dynamic handgrip exercise.NEW & NOTEWORTHY Patients with HFrEF demonstrate impaired peripheral blood flow regulation, evidenced by heightened peripheral vasoconstriction that reduces limb blood flow in response to physiological sympathoexcitation (cold pressor test). Despite evidence of exaggerated sympathetic vasoconstriction, patients with HFrEF demonstrate a normal hyperemic response to moderate-intensity handgrip exercise. Most importantly, acute, simultaneous handgrip exercise restores normal limb vasomotor control and vascular conductance during acute sympathoexcitation (cold pressor test), suggesting intact functional sympatholysis in patients with HFrEF.


Subject(s)
Exercise , Forearm , Hand Strength , Heart Failure , Stroke Volume , Sympathetic Nervous System , Vasoconstriction , Humans , Male , Sympathetic Nervous System/physiopathology , Female , Heart Failure/physiopathology , Middle Aged , Forearm/blood supply , Aged , Regional Blood Flow , Case-Control Studies , Ventricular Function, Left , Cold Temperature , Arterial Pressure , Rest
17.
Hand Surg Rehabil ; 43(3): 101719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782365

ABSTRACT

INTRODUCTION: Forearm chronic exertional compartment syndrome is a rare condition in athletes and musicians who perform repeated prolonged forced gripping movements. It mainly affects young men, and presents with cramp-like pain, beginning on the anteromedial side of the forearm and progressively extending to the entire circumference, and may be associated with muscle weakness and neurologic symptoms. The objective of this study was to report preliminary results of ultrasound-guided fasciotomy in the treatment of forearm chronic exertional compartment syndrome. MATERIAL AND METHODS: A single-center retrospective observational study was conducted. Forearm chronic exertional compartment syndrome was diagnosed on clinical presentation and pathological intramuscular pressure measurement, defined as >30 mmHg at 1 min after effort. The series comprised 7 men, with bilateral involvement. Mean age was 30 years. All patients were motorcyclists. The mean preoperative intramuscular pressure at 1 min after effort was 60.75 mmHg (range: 30-81 mmHg). The main study endpoint was change in pain on visual analogic scale. Secondary endpoints comprised patient satisfaction, change in competitive sports level, and time to return to sport. Complications were noted. RESULTS: Six patients (12 forearms) were evaluated. Mean follow-up was 22.5 months (range: 3-48 months). Mean pain rating was 7.3/10 (range: 6-9) preoperatively, and 0/10 postoperatively. All patients were satisfied with the procedure. Mean time to return to sports was 25.5 days (range: 21-30 days). No patients decreased their competitive sports level after the procedure. One patient presented a postoperative hematoma, not requiring surgery. CONCLUSION: Ultrasound-guided fasciotomy in the treatment of Forearm chronic exertional compartment syndrome is an innovative technique with promising preliminary results. LEVEL OF EVIDENCE: IV; retrospective cohort.


Subject(s)
Chronic Exertional Compartment Syndrome , Fasciotomy , Ultrasonography, Interventional , Humans , Male , Adult , Retrospective Studies , Chronic Exertional Compartment Syndrome/surgery , Young Adult , Forearm/surgery , Patient Satisfaction , Middle Aged , Return to Sport , Pain Measurement
18.
Med Sci Monit ; 30: e944149, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805404

ABSTRACT

BACKGROUND Cold and heat therapies for recovery in sports are commonly used, including in the mixed martial arts (MMA). The Game Ready (GR) device can be used for local monotherapy with either heat or cold and for contrast therapy. This study aimed to compare the effects of duration of cold and heat compression on biomechanical changes in the forearm muscles of 20 healthy mixed martial arts athletes. MATERIAL AND METHODS Twenty MMA volunteers (26.5±4.5 years old) underwent 3 different phases of the GR: (1) stimulation time 10 min (eGR-10, GR experimental group), (2) 10 min (cGR-10, sham control group) and (3) 20 min (eGR-20, GR experimental group). The following outcomes were assessed: muscle tone (T), stiffness (S), flexibility (E), pressure pain threshold (PPT), microvascular response (PU), and maximum isometric strength (Fmax). All measurements were performed before GR (rest) and after GR stimulation (post). RESULTS Both eGR-10 and eGR-20 significantly improved outcomes T (p<0.001), S (p<0.001), E (p=0.001, and p<0.001, respectively), PPT (p<0.001), PU (p<0.001), and Fmax (p<0.001). Notably, eGR-20 exhibited superior improvements in PU, Fmax, and PPT, with larger effect sizes (p<0.001). While eGR-10 demonstrated more pronounced reductions in T and S (p<0.001), these results underscore the potential for tailored GR therapy durations to optimize specific recovery goals for MMA athletes. CONCLUSIONS GR stimulation affects muscle biomechanical changes, pain threshold, muscle strength, and tissue perfusion. The study results suggest that 10 min of GR stimulation is sufficient to achieve changes that can be used to optimize recovery for MMA athletes.


Subject(s)
Athletes , Forearm , Hot Temperature , Martial Arts , Muscle, Skeletal , Humans , Male , Adult , Muscle, Skeletal/physiology , Martial Arts/physiology , Forearm/physiology , Biomechanical Phenomena , Female , Young Adult , Cold Temperature , Pain Threshold/physiology , Muscle Strength/physiology
19.
Multisens Res ; 37(3): 185-216, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38714316

ABSTRACT

The influence of landmarks, that is, nearby non-target stimuli, on spatial perception has been shown in multiple ways. These include altered target localization variability near landmarks and systematic spatial distortions of target localizations. Previous studies have mostly been conducted in the visual modality using temporary, artificial landmarks or the tactile modality with persistent landmarks on the body. Thus, it is unclear whether both landmark types produce the same spatial distortions as they were never investigated in the same modality. Addressing this, we used a novel tactile setup to present temporary, artificial landmarks on the forearm and systematically manipulated their location to either be close to a persistent landmark (wrist or elbow) or in between both persistent landmarks at the middle of the forearm. Initial data (Exp. 1 and Exp. 2) suggested systematic differences of temporary landmarks based on their distance from the persistent landmark, possibly indicating different distortions of temporary and persistent landmarks. Subsequent control studies (Exp. 3 and Exp. 4) showed this effect was driven by the relative landmark location within the target distribution. Specifically, landmarks in the middle of the target distribution led to systematic distortions of target localizations toward the landmark, whereas landmarks at the side led to distortions away from the landmark for nearby targets, and toward the landmark with wider distances. Our results indicate that experimental results with temporary landmarks can be generalized to more natural settings with persistent landmarks, and further reveal that the relative landmark location leads to different effects of the pattern of spatial distortions.


Subject(s)
Space Perception , Touch Perception , Humans , Space Perception/physiology , Female , Touch Perception/physiology , Male , Young Adult , Adult , Touch/physiology , Physical Stimulation , Forearm/physiology
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...