Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.680
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000009

ABSTRACT

Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis.


Subject(s)
Cell Movement , Cell Proliferation , Forkhead Box Protein O3 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Platelet-Derived Growth Factor , Yohimbine , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Forkhead Box Protein O3/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Animals , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Phosphorylation/drug effects , Yohimbine/pharmacology , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Cells, Cultured , Paxillin/metabolism , Rats, Sprague-Dawley , Male
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000606

ABSTRACT

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Subject(s)
Dexamethasone , Gastrointestinal Microbiome , Mice, Inbred C57BL , Muscle, Skeletal , Muscular Atrophy , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/chemically induced , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Gastrointestinal Microbiome/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Muscle Proteins/metabolism , Muscle Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Probiotics/administration & dosage , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Lactobacillus plantarum
3.
Can Respir J ; 2024: 5647813, 2024.
Article in English | MEDLINE | ID: mdl-38983965

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. Currently, no specific treatment strategy has been established; therefore, finding new treatment methods is essential. Clinically, Shenqi Huatan Decoction (SQHT) is a traditional Chinese medicinal formula for COPD treatment; however, its mechanism of action in treatment needs to be clarified. Methods: The COPD rat model was replicated by cigarette smoking and tracheal injection using the LPS method. The control group and the SQHT groups were treated with dexamethasone and SQHT by gavage, respectively. After treatment, superoxide dismutase (SOD) serum levels, total antioxidant capacity (TAOC), lipid peroxidation, and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). Activated protein kinase alpha (AMPK-α), forkhead transcription factor O3a (FOXO3a), manganese SOD (MnSOD), and peroxisome proliferator-activated receptor gamma (PPARγ) were detected using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot. Microribonucleic acid and protein expression levels were measured, and pathological changes in lung tissue were observed using hematoxylin and eosin staining. Results: The pathological findings suggested that SQHT substantially affects COPD treatment by enhancing alveolar fusion and reducing emphysema. ELISA results showed that SQHT could lower the blood levels of MDA and lipid peroxide and raise SOD and TAOC levels, suggesting that it could lessen oxidative stress. In the lung tissue of rats with COPD, large doses of SQHT intervention dramatically increased AMPK protein expression, AMPK-α, FOXO3a, MnSOD, and PPARγ, indicating that SQHT may reduce oxidative stress by activating the PPARγ-mediated AMPK/FOXO3a signaling pathway. Similar results were obtained using RT-qPCR. Conclusion: SQHT is effective for COPD treatment. The mechanism of action may be related to the activation of the PPARγ-mediated AMPK/FOXO3a signaling pathway to improve oxidative stress in lung tissue.


Subject(s)
Drugs, Chinese Herbal , Oxidative Stress , PPAR gamma , Pulmonary Disease, Chronic Obstructive , Rats, Sprague-Dawley , Signal Transduction , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Oxidative Stress/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Rats , PPAR gamma/metabolism , PPAR gamma/drug effects , Signal Transduction/drug effects , Male , Forkhead Box Protein O3/metabolism , Disease Models, Animal , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects
4.
Zhongguo Zhen Jiu ; 44(7): 821-30, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986596

ABSTRACT

OBJECTIVE: To observe the protective effect of acupuncture at "Zhibian" (BL 54) through "Shuidao (ST 28)" based on the PI3K/AKT/FOXO3a pathway in mice with poor ovarian response (POR), and to explore the possible mechanism of acupuncture in inhibiting ovarian granulosa cells apoptosis in POR. METHODS: A total of 45 mice with regular estrous cycles were randomly divided into a blank group, a model group and an acupuncture group, with 15 mice in each group. Mice in the model group and the acupuncture group were given triptolide suspension (50 mg•kg-1•d-1) by gavage for 2 weeks to establish POR model. After successful modeling, mice in the acupuncture group were given acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) for 2 weeks, once a day, 20 min each time. Ovulation induction was started the day after the intervention ended, and samples were taken from each group after ovulation induction. Vaginal smears were used to observe changes in the estrous cycle of mice. The number of oocytes retrieved, ovarian wet weight, final body weight, and ovarian index were measured. The levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) in serum were detected by ELISA. The morphology of ovarian tissue was observed by HE staining. The apoptosis of ovarian granulosa cells was detected by TUNEL staining. The mRNA expression of PI3K, AKT, and FOXO3a in ovarian tissue was detected by real-time fluorescence quantitative PCR. The protein expression of Bcl-2 associated X protein (BAX), caspase-3, phosphorylated phosphatidylinositol 3-kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in ovarian tissue was detected by Western blot. RESULTS: Compared with the blank group, the rate of estrous cycle disorder in the model group was increased (P<0.01); compared with the model group, the rate of estrous cycle disorder in the acupuncture group was decreased (P<0.01). Compared with the blank group, the number of oocytes retrieved, ovarian wet weight, ovarian index, and final body weight in the model group were decreased (P<0.01); compared with the model group, the number of oocytes retrieved, ovarian index, and ovarian wet weight were increased (P<0.01, P<0.05), and there was no significant difference in final body weight (P>0.05) in the acupuncture group. Compared with the blank group, the serum levels of FSH and LH were increased (P<0.01), and the serum levels of AMH and E2 were decreased (P<0.01) in the model group; compared with the model group, the serum levels of FSH and LH were decreased (P<0.01, P<0.05), and the serum levels of AMH and E2 were increased (P<0.01, P<0.05) in the acupuncture group. Compared with the blank group, the number of normal developing follicles in ovarian tissue in the model group was decreased and the morphology was poor, while the number of atretic follicles increased; compared with the model group, the number, morphology, and granulosa cell structure of follicles in the acupuncture group improved to varying degrees, and the number of atretic follicles decreased. Compared with the blank group, the apoptosis rate of ovarian granulosa cells in the model group was increased (P<0.01); compared with the model group, the apoptosis rate of ovarian granulosa cells in the acupuncture group was decreased (P<0.01). Compared with the blank group, the FOXO3a mRNA expression and caspase-3 and BAX protein expression in ovarian tissue in the model group were increased (P<0.01), and the mRNA expression of PI3K and AKT and the protein expression of p-PI3K, p-AKT, and p-FOXO3a in ovarian tissue were decreased (P<0.01); compared with the model group, the mRNA expression of FOXO3a and protein expression of caspase-3 and BAX in ovarian tissue in the acupuncture group were decreased (P<0.05, P<0.01), and the mRNA expression of PI3K and AKT and the protein expression of p-PI3K, p-AKT, and p-FOXO3a in ovarian tissue were increased (P<0.01, P<0.05). CONCLUSION: Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could inhibit ovarian cell apoptosis, and improve ovarian function in POR mice, and its mechanism may be related to the regulation of key factors in the PI3K/AKT/FOXO3a pathway.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Forkhead Box Protein O3 , Ovary , Proto-Oncogene Proteins c-akt , Animals , Female , Mice , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Ovary/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/genetics , Apoptosis , Ovulation
5.
Life Sci ; 350: 122769, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38848943

ABSTRACT

The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.


Subject(s)
Aging , Eye Diseases , Forkhead Box Protein O3 , Humans , Forkhead Box Protein O3/metabolism , Eye Diseases/metabolism , Eye Diseases/drug therapy , Animals , Aging/metabolism , Longevity
6.
Sci Rep ; 14(1): 13281, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858492

ABSTRACT

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and ß-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.


Subject(s)
Apoptosis , Forkhead Box Protein O3 , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Zeranol/analogs & derivatives , Zeranol/metabolism , Zeranol/pharmacology , Cell Line, Tumor , Zearalenone/pharmacology , Zearalenone/toxicity , Zearalenone/analogs & derivatives , Cell Survival/drug effects , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
7.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 219-227, 2024.
Article in English | MEDLINE | ID: mdl-38945887

ABSTRACT

This study investigated the protective effect of carnosine and its components (L-histidine and ß-alanine [HA]) against dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Myotubes were treated with Dex (10 µM) to induce muscle atrophy manifested by decreased myotube diameter, low myosin heavy chain content, and increased expression of muscle atrophy-associated ubiquitin ligases (Atrogin-1, MuRF-1, and Cbl-b). Carnosine (20 mM) treatment significantly improved the myotube diameter and MyHC protein expression level in Dex-treated C2C12 myotubes. It also downregulated the expression of Atrogin-1, MuRF-1, and Cbl-b and suppressed the expression of forkhead box O3 (FoxO3a) mediated by Dex. Furthermore, reactive oxygen species production was increased by Dex but was ameliorated by carnosine treatment. However, HA (20 mM), the component of carnosine, treatment was found ineffective in preventing Dex-induced protein damage. Therefore, based on above results it can be suggested that carnosine could be a potential therapeutic agent to prevent Dex-induced muscle atrophy compared to its components HA.


Subject(s)
Carnosine , Dexamethasone , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Reactive Oxygen Species , SKP Cullin F-Box Protein Ligases , Carnosine/pharmacology , Dexamethasone/pharmacology , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Animals , Mice , Muscle Proteins/metabolism , Cell Line , Reactive Oxygen Species/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Forkhead Box Protein O3/metabolism , Tripartite Motif Proteins/metabolism , Myosin Heavy Chains/metabolism
8.
Biomolecules ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927035

ABSTRACT

Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.


Subject(s)
Anaplastic Lymphoma Kinase , Cell Proliferation , Lysophospholipids , Neuroblastoma , Signal Transduction , Humans , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Proliferation/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Phosphorylation/drug effects , Piperidines/pharmacology , Carbazoles/pharmacology , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , MAP Kinase Signaling System/drug effects
9.
Chem Biol Interact ; 398: 111110, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38876248

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder that is linked to metabolic syndrome, mitochondrial dysfunction and impaired autophagy. Polydatin (PD), a natural polyphenol from Polygonum cuspidatum, exhibits various pharmacological effects and protects against NAFLD. The aim of this study was to reveal the molecular mechanisms and therapeutic potential of PD for NAFLD, with a focus on the role of mitochondrial autophagy mediated by sirtuin 3 (SIRT3), fork-head box O3 (FOXO3) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), and by PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN). We combined network pharmacology analysis, animal models and cell culture experiments to show that PD could regulate the mitochondrial autophagy pathway by modulating several key genes related to mitochondrial function, and ameliorate the liver function, histopathology and mitochondrial biogenesis of NAFLD mice and hepatocytes by activating the SIRT3-FOXO3-BNIP3 axis and the PINK1-PRKN-dependent mechanism of mitochondrial autophagy. We also identified the core targets of PD, including SIRT3, FOXO3A, CASP3, PARKIN, EGFR, STAT3, MMP9 and PINK, and confirmed that silencing SIRT3 could significantly attenuate the beneficial effect of PD. This study provided novel theoretical and experimental support for PD as a promising candidate for NAFLD treatment, and also suggested new avenues and methods for investigating the role of mitochondrial autophagy in the pathogenesis and intervention of NAFLD.


Subject(s)
Forkhead Box Protein O3 , Glucosides , Mice, Inbred C57BL , Mitochondria , Non-alcoholic Fatty Liver Disease , Protein Kinases , Sirtuin 3 , Stilbenes , Ubiquitin-Protein Ligases , Animals , Forkhead Box Protein O3/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Autophagy/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Membrane Proteins
10.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844781

ABSTRACT

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Subject(s)
Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
11.
Integr Cancer Ther ; 23: 15347354241258961, 2024.
Article in English | MEDLINE | ID: mdl-38899834

ABSTRACT

CONTEXT: Salvia miltiorrhiza (SM) is a commonly used herb in traditional Chinese medicine (TCM) and has been used in the treatment of pancreatic cancer to relieve the symptom of "blood stasis and toxin accumulation." Tanshinones (Tan), the main lipophilic constituents extracted from the roots and rhizomes of SM, have been reported to possess anticancer functions in several cancers. But the mechanism of how the active components work in pancreatic cancer still need to be clarified. OBJECTIVE: In this study, we aimed to investigate the therapeutic potential of Tan in pancreatic cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS: The viabilities of PANC-1 and Bxpc-3 cells were determined by MTT assay, after treatment with various concentrations of Tan. The apoptotic cells were quantified by annexin V-FITC/PI staining and DAPI staining assays. The expression of relative proteins was used western blotting. Tumor growth was assessed by subcutaneously inoculating cells into C57BL/6 mice. RESULTS: Our experiments discovered that Tan effectively suppressed pancreatic cancer cell proliferation and promoted apoptosis. Mechanistically, we propose that Tan enhances intracellular ROS levels by activating the AKT/FOXO3/SOD2 signaling pathway, ultimately leading to apoptosis in pancreatic cancer cells. In vivo assay showed the antitumor effect of Tan. CONCLUSION: Tan, a natural compound from Salvia miltiorrhiza, was found to effectively suppress pancreatic cancer cell proliferation and promote apoptosis both in vitro and in vivo. Mechanistically, we propose a positive feedback loop mechanism. These findings provide valuable insights into the molecular pathways driving pancreatic cancer progression.


Subject(s)
Abietanes , Apoptosis , Forkhead Box Protein O3 , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Salvia miltiorrhiza , Signal Transduction , Pancreatic Neoplasms/drug therapy , Salvia miltiorrhiza/chemistry , Abietanes/pharmacology , Apoptosis/drug effects , Animals , Humans , Forkhead Box Protein O3/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Mice, Inbred C57BL , Cell Proliferation/drug effects
12.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894630

ABSTRACT

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Subject(s)
Berberine , Forkhead Box Protein O3 , Hypoxia , Signal Transduction , Sirtuins , Berberine/pharmacology , Berberine/therapeutic use , Animals , Sirtuins/metabolism , Sirtuins/genetics , Signal Transduction/drug effects , Hypoxia/metabolism , Mice , Male , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Ventricular Remodeling/drug effects , Disease Models, Animal
13.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836662

ABSTRACT

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Subject(s)
Autophagy , Diterpenes , Forkhead Box Protein O3 , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Stress, Mechanical , Ubiquitin-Protein Ligases , MicroRNAs/metabolism , MicroRNAs/genetics , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Diterpenes/pharmacology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Male , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Adult , Disease Models, Animal
14.
Biomed Pharmacother ; 176: 116833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843589

ABSTRACT

Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.


Subject(s)
Forkhead Box Protein O3 , Lung Neoplasms , Humans , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic , Molecular Targeted Therapy
15.
Exp Eye Res ; 244: 109919, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.


Subject(s)
Amnion , Exosomes , Forkhead Box Protein O3 , Mesenchymal Stem Cells , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Retinal Degeneration , Retinal Pigment Epithelium , Signal Transduction , Humans , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Amnion/cytology , Culture Media, Conditioned/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/etiology , Forkhead Box Protein O3/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Apoptosis , Cells, Cultured , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial , Blotting, Western , Animals , Cell Survival , Hydrogen Peroxide/toxicity
16.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38805496

ABSTRACT

Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.


Subject(s)
Paternal Inheritance , Prenatal Exposure Delayed Effects , Testosterone , Animals , Female , Male , Mice , Prenatal Exposure Delayed Effects/genetics , Pregnancy , Testosterone/blood , Paternal Inheritance/genetics , Maternal Exposure/adverse effects , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Epigenesis, Genetic , Androgens/pharmacology , TOR Serine-Threonine Kinases/metabolism , Ovary/metabolism , Ovary/drug effects , Testis/metabolism , Testis/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , DNA Methylation/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics
17.
Biomed Pharmacother ; 176: 116778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788601

ABSTRACT

The incidence of cerebral infarction triggered by abnormal glucose tolerance has increased; however, the relationship between glucose concentration in the brain and the detailed mechanism of post ischemic cell death remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, is the rate-limiting enzyme for NAD+ synthesis in the salvage pathway. Although NAMPT activation prevents neuronal injury, the relationship between NAMPT activity, glucose metabolism disorders, and cerebral ischemia-induced neuronal cell death is unknown. In this study, we determined changes in NAMPT on cerebral ischemic injuries with diabetes using a db/db mouse model of type 2 diabetes and then identified the underlying mechanisms using Neuro2a cells. The expression of inflammatory cytokine mRNAs was increased in db/db and db/+ middle cerebral artery occlusion and reperfusion (MCAO/R) mice. Although NeuN-positive cells were decreased after MCAO/R, the number of NAMPT and NeuN double-positive cells in NeuN-positive neuronal cells increased in db/db MCAO/R mice. Next, the role of NAMPT in Neuro2a cells under conditions of high glucose (HGC) and oxygen-glucose deprivation (OGD), which mimics diabetes-complicated cerebral infarction, was examined. Treatment with P7C3-A20, a NAMPT activator, suppressed the decrease in cell viability caused by HGC/OGD; however, there were no significant differences in the levels of cleaved caspase-3 and Bax proteins. Moreover, increased FoxO3a and LC3-II levels after HGC/OGD were inhibited by P7C3-A20 treatment. Our findings indicate that NAMPT activation is associated with neuronal survival under ischemic conditions with abnormal glucose tolerance through the regulation of FoxO3a/LC3.


Subject(s)
Brain Ischemia , Cell Survival , Forkhead Box Protein O3 , Glucose , Neurons , Nicotinamide Phosphoribosyltransferase , Signal Transduction , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Forkhead Box Protein O3/metabolism , Glucose/metabolism , Glucose/deficiency , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Male , Mice , Cell Survival/drug effects , Signal Transduction/drug effects , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cytokines/metabolism , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Cell Line, Tumor , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications
18.
EMBO Rep ; 25(7): 2974-3007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816514

ABSTRACT

ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.


Subject(s)
COVID-19 , Calcium , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Signal Transduction , Virus Replication , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Proto-Oncogene Proteins c-akt/metabolism , COVID-19/virology , COVID-19/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Calcium/metabolism , Animals , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Chlorocebus aethiops , COVID-19 Drug Treatment , Vero Cells , Female , Calcium-Transporting ATPases/metabolism , Calcium-Transporting ATPases/genetics , Male
19.
Int Immunopharmacol ; 134: 112118, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705029

ABSTRACT

This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.


Subject(s)
Brain-Derived Neurotrophic Factor , Forkhead Box Protein O3 , Klotho Proteins , Micelles , MicroRNAs , Polyethylene Glycols , Selenium , Triterpenes , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Rats , Selenium/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Signal Transduction/drug effects , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Oxidative Stress/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Polymers/chemistry
20.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 253-257, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814205

ABSTRACT

This study investigated forkhead box O3a (FoxO3a) expression in peripheral blood of sepsis mice and its correlation with lymphocyte apoptosis. Sixty male C57 mice were randomly assigned to sham, model, and intervention groups. Sepsis was induced via cecal ligation in the model and intervention groups, while sham mice underwent similar procedures excluding cecal ligation. Apoptosis proteins in lymphocytes were assessed by Western blotting, reactive oxygen species (ROS) levels by 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA), and serum interleukin-1ß (IL-1ß) and IL-10 content. The model group exhibited elevated mortality, increased lymphocyte apoptosis, higher Caspase3 expression, and lower Bcl-2/Bax ratio compared to sham and intervention groups. Additionally, the model group displayed decreased serum IL-10, elevated IL-1ß, heightened lymphocytic ROS, reduced FoxO3a expression, and increased levels of p-FoxO3a, p-PI3K, and p-Akt compared to sham. In sepsis mice, inhibited FoxO3a signaling in lymphocytes leads to enhanced apoptosis, elevated ROS, and immune cell dysfunction, contributing to increased mortality.


Subject(s)
Apoptosis , Forkhead Box Protein O3 , Lymphocytes , Mice, Inbred C57BL , Reactive Oxygen Species , Sepsis , Animals , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Sepsis/metabolism , Sepsis/pathology , Sepsis/blood , Male , Lymphocytes/metabolism , Reactive Oxygen Species/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Proto-Oncogene Proteins c-akt/metabolism , Mice , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-10/metabolism , Interleukin-10/blood , Disease Models, Animal , Caspase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...