Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.754
Filter
1.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932234

ABSTRACT

The thermostability of vaccines, particularly enveloped viral vectored vaccines, remains a challenge to their delivery wherever needed. The freeze-drying of viral vectored vaccines is a promising approach but remains challenging due to the water removal process from the outer and inner parts of the virus. In the case of enveloped viruses, freeze-drying induces increased stress on the envelope, which often leads to the inactivation of the virus. In this study, we designed a method to freeze-dry a recombinant vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike glycoprotein. Since the envelope of VSV is composed of 50% lipids and 50% protein, the formulation study focused on both the protein and lipid portions of the vector. Formulations were prepared primarily using sucrose, trehalose, and sorbitol as cryoprotectants; mannitol as a lyoprotectant; and histidine as a buffer. Initially, the infectivity of rVSV-SARS-CoV-2 and the cake stability were investigated at different final moisture content levels. High recovery of the infectious viral titer (~0.5 to 1 log loss) was found at 3-6% moisture content, with no deterioration in the freeze-dried cakes. To further minimize infectious viral titer loss, the composition and concentration of the excipients were studied. An increase from 5 to 10% in both the cryoprotectants and lyoprotectant, together with the addition of 0.5% gelatin, resulted in the improved recovery of the infectious virus titer and stable cake formation. Moreover, the secondary drying temperature of the freeze-drying process showed a significant impact on the infectivity of rVSV-SARS-CoV-2. The infectivity of the vector declined drastically when the temperature was raised above 20 °C. Throughout a long-term stability study, formulations containing 10% sugar (sucrose/trehalose), 10% mannitol, 0.5% gelatin, and 10 mM histidine showed satisfactory stability for six months at 2-8 °C. The development of this freeze-drying process and the optimized formulation minimize the need for a costly cold chain distribution system.


Subject(s)
COVID-19 Vaccines , Cryoprotective Agents , Freeze Drying , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Freeze Drying/methods , SARS-CoV-2/immunology , SARS-CoV-2/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Trehalose/chemistry , COVID-19/prevention & control , COVID-19/virology , Animals , Humans , Mannitol/chemistry , Sucrose/chemistry , Vero Cells , Chlorocebus aethiops , Sorbitol/chemistry , Drug Stability , Histidine/chemistry , Vesicular stomatitis Indiana virus/genetics , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
2.
Int J Biol Macromol ; 273(Pt 1): 132967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851609

ABSTRACT

Conventional oil-water separation membranes are difficult to establish a trade-off between membrane flux and separation efficiency, and often result in serious secondary contamination due to their fouling issue and non-degradability. Herein, a double drying strategy was introduced through a combination of oven-drying and freeze-drying to create a super-wettable and eco-friendly oil-water separating aerogel membrane (TMAdf). Due to the regular nacre-like structures developed in the drying process and the pores formed by freeze-drying, TMAdf aerogel membrane finally develops regularly arranged porous structures. In addition, the aerogel membrane possesses excellent underwater superoleophobicity with a contact angle above 168° and antifouling properties. TMAdf aerogel membrane can effectively separate different kinds of oil-water mixtures and highly emulsified oil-water dispersions under gravity alone, achieving exceptionally high flux (3693 L·m-2·h-1) and efficiency (99 %), while being recyclable. The aerogel membrane also displays stability and universality, making it effective in removing oil droplets from water in corrosive environments such as acids, salts and alkalis. Furthermore, TMAdf aerogel membrane shows long-lasting antibacterial properties (photothermal sterilization up to 6 times) and biodegradability (completely degraded after 50 days in soil). This study presents new ideas and insights for the fabrication of multifunctional membranes for oil-water separation.


Subject(s)
Anti-Bacterial Agents , Membranes, Artificial , Oils , Water , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Oils/chemistry , Water/chemistry , Gels/chemistry , Porosity , Desiccation/methods , Hydrophobic and Hydrophilic Interactions , Freeze Drying/methods
3.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837050

ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Subject(s)
Freeze Drying , Freeze Drying/methods , Spectroscopy, Fourier Transform Infrared , Spray Drying , Microbial Viability , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/physiology , Lactobacillales/metabolism , Lactobacillales/physiology , Desiccation
4.
AAPS PharmSciTech ; 25(6): 143, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918304

ABSTRACT

The topology and surface characteristics of lyophilisates significantly impact the stability and reconstitutability of freeze-dried pharmaceuticals. Consequently, visual quality control of the product is imperative. However, this procedure is not only time-consuming and labor-intensive but also expensive and prone to errors. In this paper, we present an approach for fully automated, non-destructive inspection of freeze-dried pharmaceuticals, leveraging robotics, computed tomography, and machine learning.


Subject(s)
Freeze Drying , Machine Learning , Freeze Drying/methods , Pharmaceutical Preparations/chemistry , Quality Control , Chemistry, Pharmaceutical/methods , Tomography, X-Ray Computed/methods , Robotics/methods , Technology, Pharmaceutical/methods , Automation/methods
5.
Anal Bioanal Chem ; 416(16): 3797-3809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702447

ABSTRACT

The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.


Subject(s)
Cannabinoids , Cannabis , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Cannabis/chemistry , Cannabinoids/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Chromatography, High Pressure Liquid/methods , Inflorescence/chemistry , Freeze Drying/methods , Desiccation/methods
6.
Mol Pharm ; 21(7): 3163-3172, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38781678

ABSTRACT

Stabilization of proteins by disaccharides in lyophilized formulations depends on the interactions between the protein and the disaccharide (system homogeneity) and the sufficiently low mobility of the system. Human serum albumin (HSA) was lyophilized with disaccharides (sucrose and/or trehalose) in different relative concentrations. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy 1H T1 and 1H T1ρ relaxation times were measured to determine the homogeneity of the lyophilized systems on 20-50 and 1-3 nm domains, respectively, with 1H T1 relaxation times also being used to determine the ß-relaxation rate. HSA/sucrose systems had longer 1H T1 relaxation times and were slightly more stable than HSA/trehalose systems in almost all cases shown. HSA/sucrose/trehalose systems have 1H T1 relaxation times between the HSA/sucrose and HSA/trehalose systems and did not result in a more stable system compared with binary systems. Inhomogeneity was evident in a sample containing relative concentrations of 10% HSA and 90% trehalose, suggesting trehalose crystallization during lyophilization. Under these stability conditions and with these ssNMR acquisition parameters, a 1H T1 relaxation time below 1.5 s correlated with an unstable sample, regardless of the disaccharide(s) used.


Subject(s)
Freeze Drying , Magnetic Resonance Spectroscopy , Sucrose , Trehalose , Trehalose/chemistry , Sucrose/chemistry , Freeze Drying/methods , Humans , Magnetic Resonance Spectroscopy/methods , Serum Albumin, Human/chemistry , Serum Albumin/chemistry , Drug Stability , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Disaccharides/chemistry
7.
Mol Pharm ; 21(7): 3634-3642, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805365

ABSTRACT

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.


Subject(s)
Adenylate Kinase , Escherichia coli , Freeze Drying , Trehalose , Freeze Drying/methods , Adenylate Kinase/metabolism , Trehalose/chemistry , Serum Albumin, Bovine/chemistry , Excipients/chemistry , Calorimetry, Differential Scanning , Maltose/chemistry , Histidine/chemistry , Arginine/chemistry , Magnetic Resonance Spectroscopy
8.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38758116

ABSTRACT

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Subject(s)
Drug Stability , Excipients , Freeze Drying , Polymers , Povidone , Transition Temperature , Trehalose , Freeze Drying/methods , Povidone/chemistry , Trehalose/chemistry , Excipients/chemistry , Polymers/chemistry , Sucrose/chemistry , Sugars/chemistry , Hydrogen Bonding , Drug Storage , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning , Humidity , Pyrrolidines/chemistry , Vinyl Compounds/chemistry
9.
J Pharm Sci ; 113(7): 1695-1700, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701895

ABSTRACT

Long-lasting space missions as well as space tourism are technically possible today and economically in reach. It is a matter of time until the use of biopharmaceutical drug products in space will be common practice. Until drug product manufacturing in space is possible, the products need to be brought to space with rockets, which means that stable and light-weight products are preferred. Lyophilization is a promising approach to reduce weight during transportation and achieve storage stability at room temperature without cold-chain demands. This implies that recycled water in space needs to be used for reconstitution which poses a microbiological challenge and should be considered during formulation development. Furthermore, administration of the injectable drugs in space has an impact on the chosen packaging material which needs to be considered during drug product development.


Subject(s)
Drug Stability , Drug Storage , Freeze Drying , Transportation , Freeze Drying/methods , Space Flight/methods , Drug Packaging/methods , Biological Products/chemistry , Pharmaceutical Preparations/chemistry , Humans
10.
J Food Sci ; 89(6): 3276-3289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700316

ABSTRACT

The objective of this paper was to evaluate the effect of spray drying (SD), spray freeze-drying (SFD), freeze-drying (FD), and microwave freeze-drying (MFD) on the characteristics of fish oil (FO) microcapsules. The physicochemical properties, morphology, fatty acid composition, and stability of the microcapsules were analyzed. The encapsulation efficiencies of microcapsules dried by SD, SFD, FD, and MFD were 86.98%, 77.79%, 63.29%, and 57.89%, respectively. SD microcapsules exhibited superior properties in terms of effective loading capacity, color, and flowability. Conversely, SFD microcapsules demonstrated improved solubility. Microencapsulation positively affected the thermal stability of FO, but the content of unsaturated fatty acids decreased. The findings from the storage experiment indicated that the oxidative stability of SD fish oil microcapsules was marginally lower compared to microcapsules produced through three alternative drying techniques, all of which were based on the FD concept. The comparison of various drying methods and their effects on the quality of FO microcapsules offers valuable insights that can serve as a foundation for the industrial production of high-quality microcapsules.


Subject(s)
Capsules , Drug Compounding , Fish Oils , Freeze Drying , Microwaves , Spray Drying , Fish Oils/chemistry , Freeze Drying/methods , Drug Compounding/methods , Desiccation/methods , Particle Size , Drug Stability
11.
Pharm Res ; 41(6): 1285-1297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769275

ABSTRACT

PURPOSE: This study investigates the thermal interactions between adjacent vials during freezing and assesses their impact on nucleation times. METHODS: Various loading configurations were analyzed to understand their impact on nucleation times. Configurations involving direct contact between vials and freeze-dryer shelves were studied, along with setups using empty vials between filled ones. Additionally, non-conventional loading configurations and glycol-filled vials were tested. The analysis includes 2R and 20R vials, which are commonly utilized in the freezing and lyophilization of drug products, along with two different fill depths, 1 and 1.4 cm. RESULTS: The investigation revealed that configurations with direct contact between vials and freeze-dryer shelves led to substantial thermal interactions, resulting in delayed nucleation in adjacent vials and affecting the temperature at which nucleation takes place in a complex way. In another setup, empty vials were placed between filled vials, significantly reducing thermal interactions. Further tests with non-conventional configurations and glycol-filled vials confirmed the presence of thermal interactions with a minimal inhibitory effect. CONCLUSIONS: These findings carry significant implications for the pharmaceutical industry, highlighting the role of thermal interactions among vials during freezing and their impact on the temperature at which ice nucleation occurs.


Subject(s)
Freeze Drying , Freezing , Ice , Freeze Drying/methods , Temperature , Crystallization , Pharmaceutical Preparations/chemistry , Drug Packaging/methods
12.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791401

ABSTRACT

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Subject(s)
Calcium Phosphates , Ceramics , Freeze Drying , Freeze Drying/methods , Calcium Phosphates/chemistry , Porosity , Ceramics/chemistry , Surface-Active Agents/chemistry , Materials Testing , X-Ray Diffraction
13.
Int J Pharm ; 659: 124168, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663644

ABSTRACT

In this study, we present the lyophilization process development efforts for a vaccine formulation aimed at optimizing the primary drying time (hence, the total cycle length) through comprehensive evaluation of its thermal characteristics, temperature profile, and critical quality attributes (CQAs). Differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM) were used to experimentally determine the product-critical temperatures, viz., the glass transition temperature (Tg') and the collapse temperature (Tc). Initial lyophilization studies indicated that the conventional approach of targeting product temperature (Tp) below the Tc (determined from FDM) resulted in long and sub-optimal drying times. Interestingly, aggressive drying conditions where the product temperature reached the total collapse temperature did not result in macroscopic collapse but, instead, reduced the drying time by âˆ¼ 45 % while maintaining product quality requirements. This observation suggests the need for a more reliable measurement of the macroscopic collapse temperature for product in vials. The temperature profiles from different lyophilization runs showed a drop in product temperature following the primary drying ramp, of which the magnitude was correlated to the degree of macroscopic collapse. The batch-average product resistance, Rp, determined using the manometric temperature measurement (MTM), decreased with increasing dried layer thickness for aggressive primary drying conditions. A quantitative analysis of the product temperature and resistance profiles combined with qualitative assessment of cake appearance attributes was used to determine a more representative macro-collapse temperature, Tcm, for this vaccine product. A primary drying design space was generated using first principles modeling of heat and mass transfer to enable selection of optimum process parameters and reduce the number of exploratory lyophilization runs. Overall, the study highlights the importance of accurate determination of macroscopic collapse in vials, pursuing aggressive drying based on individual product characteristics, and leveraging experimental and modeling techniques for process optimization.


Subject(s)
Calorimetry, Differential Scanning , Freeze Drying , Vaccines , Freeze Drying/methods , Vaccines/chemistry , Transition Temperature , Temperature , Chemistry, Pharmaceutical/methods , Drug Compounding/methods
14.
Int J Pharm ; 656: 124119, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38621616

ABSTRACT

Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.


Subject(s)
Carrageenan , Fibroblasts , Freeze Drying , Wound Healing , Freeze Drying/methods , Wound Healing/drug effects , Animals , Porosity , Mice , Carrageenan/chemistry , Fibroblasts/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Tissue Scaffolds , Cell Adhesion , Male , Skin/metabolism
15.
Int Wound J ; 21(5): e14888, 2024 May.
Article in English | MEDLINE | ID: mdl-38686514

ABSTRACT

Allografts derived from live-birth tissue obtained with donor consent have emerged as an important treatment option for wound and soft tissue repairs. Placental membrane derived from the amniotic sac consists of the amnion and chorion, the latter of which contains the trophoblast layer. For ease of cleaning and processing, these layers are often separated with or without re-lamination and the trophoblast layer is typically discarded, both of which can negatively affect the abundance of native biological factors and make the grafts difficult to handle. Thus, a full-thickness placental membrane that includes a fully-intact decellularized trophoblast layer was developed for homologous clinical use as a protective barrier and scaffold in soft tissue repairs. Here, we demonstrate that this full-thickness placental membrane is effectively decellularized while retaining native extracellular matrix (ECM) scaffold and biological factors, including the full trophoblast layer. Following processing, it is porous, biocompatible, supports cell proliferation in vitro, and retains its biomechanical strength and the ability to pass through a cannula without visible evidence of movement or damage. Finally, it was accepted as a natural scaffold in vivo with evidence of host-cell infiltration, angiogenesis, tissue remodelling, and structural layer retention for up to 10 weeks in a murine subcutaneous implant model.


Subject(s)
Placenta , Humans , Female , Pregnancy , Animals , Mice , Tissue Scaffolds , Freeze Drying/methods , Decellularized Extracellular Matrix , Wound Healing/physiology
16.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613468

ABSTRACT

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Subject(s)
Cell Survival , Chemical and Drug Induced Liver Injury , Flavonoids , Freeze Drying , Solubility , Tablets , Animals , Flavonoids/administration & dosage , Flavonoids/pharmacology , Flavonoids/chemistry , Cell Survival/drug effects , Humans , Rats , Hep G2 Cells , Freeze Drying/methods , Male , Administration, Sublingual , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Protective Agents/pharmacology , Protective Agents/administration & dosage , Liver/drug effects , Liver/metabolism , Rats, Wistar
17.
Compr Rev Food Sci Food Saf ; 23(3): e13347, 2024 05.
Article in English | MEDLINE | ID: mdl-38650473

ABSTRACT

The contribution of dehydration to the growing market of food powders from slurry/liquid matrices is inevitable. To overcome the challenges posed by conventional drying technologies, several innovative approaches have emerged. However, industrial implementation is limited due to insufficient information on the best-suited drying technologies for targeted products. Therefore, this review aimed to compare various conventional and emerging dehydration technologies (such as active freeze, supercritical, agitated thin-film, and vortex chamber drying) based on their fundamental principles, potential applications, and limitations. Additionally, this article reviewed the effects of drying technologies on porosity, which greatly influence the solubility, rehydration, and stability of powder. The comparison between different drying technologies enables informed decision-making in selecting the appropriate one. It was found that active freeze drying is effective in producing free-flowing powders, unlike conventional freeze drying. Vortex chamber drying could be considered a viable alternative to spray drying, requiring a compact chamber than the large tower needed for spray drying. Freeze-dried, spray freeze-dried, and foam mat-dried powders exhibit higher porosity than spray-dried ones, whereas supercritical drying produces nano-porous interconnected powders. Notably, several factors like glass transition temperature, drying technologies, particle aggregation, agglomeration, and sintering impact powder porosity. However, some binders, such as maltodextrin, sucrose, and lactose, could be applied in controlled agglomeration to enhance powder porosity. Further investigation on the effect of emerging technologies on powder properties and their commercial feasibility is required to discover their potential in liquid drying. Moreover, utilizing clean-label drying ingredients like dietary fibers, derived from agricultural waste, presents promising opportunities.


Subject(s)
Desiccation , Powders , Porosity , Powders/chemistry , Desiccation/methods , Freeze Drying/methods , Food Handling/methods
18.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38551918

ABSTRACT

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Subject(s)
Calorimetry, Differential Scanning , Excipients , Freeze Drying , Poloxamer , Trehalose , Freeze Drying/methods , Poloxamer/chemistry , Excipients/chemistry , Trehalose/chemistry , Calorimetry, Differential Scanning/methods , Sucrose/chemistry , X-Ray Diffraction , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Crystallization/methods , Chemistry, Pharmaceutical/methods , Proteins/chemistry , Drug Compounding/methods , Freezing
19.
J Pharm Sci ; 113(7): 1898-1906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369018

ABSTRACT

As lyophilization continues to be a critical step in the manufacturing of sensitive biopharmaceuticals, challenges often arise during the scale up to commercial scale or the transfer from one manufacturing site to another. While data from the small-scale development of the lyophilization cycle is abundant it is typically much more difficult to extract important information from commercial scale cycles, due to the lack of process analytical technologies available on the commercial line. There is often a reluctance to include wireless temperature or pressure probes during GMP operations due to the additional contamination risk, and retrofitting equipment such as the TDLAS can be prohibitively expensive. Further, as products become more advanced, the cost of consuming the product or even the availability of material may limit the opportunities to run commercial scale trials. This paper presents two novel methods to garner critical cycle information to allow for the evaluation of cycle performance without the need for expensive analytical equipment, costly revalidation and line downtime. Critically, this can be achieved using commonly available temperature and capacitance probes on existing commercial scale equipment. The first method is a calorimetric method, based on quantifying the differences in heat transfer liquid temperature between the shelf inlet and shelf outlet. This change in temperature results from the on-going sublimation, an endo-thermic reaction occurring during lyophilization. The second method uses the differential pressure between the chamber and condenser resulting from the vapor flow from vial to condenser during primary drying. As stated by the authors both methods align well and provide valuable cycle characterization data.


Subject(s)
Freeze Drying , Pressure , Temperature , Freeze Drying/methods , Freeze Drying/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Cost-Benefit Analysis
20.
Phytochem Anal ; 35(4): 903-922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403936

ABSTRACT

INTRODUCTION: The safety and quality of many medicinally important herbs are compromised since farmers and small organizations are involved in the cultivation, aggregation, and primary processing of these herbs. Such organizations often lack adequate quality control facilities. To improve the safety and quality of herbal products, simple, rapid, and affordable quality control systems are required. OBJECTIVES: The aim of this study was to assess the suitability of microwave oven-drying for moisture content (MC) determination and sample preparation of herbs in small organizations. METHODS: Microwave oven-drying (720 W) and convective oven-drying at 105°C for MC determination were compared. The effects of three different drying methods (microwave oven-drying, low-temperature convective drying, and freeze-drying) on in vitro antioxidant and polyphenol oxidase (PPO) activity were determined, similarity analysis was conducted using HPLC signature spectra, and validation was performed with LC-MS focusing on one herb. RESULTS: Microwave oven-drying at 720 W significantly reduced the drying time (from hours to minutes), whereas the spatial variation of temperature in convective ovens set at 105°C can cause about 10% underestimation of MC. Microwave oven-drying showed similar macro-properties like freeze-drying and higher extractability (10%-20%) and in vitro antioxidant capacity (33%-66%) and lower PPO activity compared to low-temperature convective drying. HPLC signature spectra revealed strong similarity of soluble components between freeze-dried and microwave oven-dried herbs. LC-MS analysis demonstrated more common compounds between freeze-dried and microwave oven-dried Centella asiatica extracts, whereas convective tray-dried samples had fewer compounds common with samples obtained by freeze-drying or microwave oven-drying. CONCLUSIONS: Microwave oven-drying is rapid (tens of min) and shows small batch-to-batch variation compared to oven-drying at 105°C. The in vitro antioxidant assays and signature spectra can be used for assessing the source and purity or quality of a specific herb variety.


Subject(s)
Antioxidants , Desiccation , Freeze Drying , Microwaves , Plants, Medicinal , Quality Control , Plants, Medicinal/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Desiccation/methods , Freeze Drying/methods , Chromatography, High Pressure Liquid/methods , Catechol Oxidase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL