Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.119
Filter
1.
JCI Insight ; 9(16)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39171530

ABSTRACT

Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.


Subject(s)
Disease Models, Animal , Frataxin , Friedreich Ataxia , Iron-Binding Proteins , NAD , Animals , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Mice , Humans , NAD/metabolism , Phenotype , Male , Cardiomegaly/metabolism , Cardiomegaly/pathology , Nicotinamide Mononucleotide/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Female , Gene Knockdown Techniques , Pyridinium Compounds , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119809, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134123

ABSTRACT

Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.


Subject(s)
Disease Models, Animal , Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Friedreich Ataxia/metabolism , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Animals , Humans , Trinucleotide Repeat Expansion/genetics , Mutation
3.
Sci Rep ; 14(1): 19876, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191875

ABSTRACT

Frataxin (FXN) is required for iron-sulfur cluster biogenesis, and its loss causes the early-onset neurodegenerative disease Friedreich ataxia (FRDA). Loss of FXN is a susceptibility factor in the development of diabetes, a common metabolic complication after myocardial hypertrophy in patients with FRDA. The underlying mechanism of FXN deficient-induced hyperglycemia in FRDA is, however, poorly understood. In this study, we confirmed that the FXN deficiency mouse model YG8R develops insulin resistance in elder individuals by disturbing lipid metabolic homeostasis in adipose tissues. Evaluation of lipolysis, lipogenesis, and fatty acid ß-oxidation showed that lipolysis is most severely affected in white adipose tissues. Consistently, FXN deficiency significantly decreased expression of lipolytic genes encoding adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) resulting in adipocyte enlargement and inflammation. Lipolysis induction by fasting or cold exposure remarkably upregulated FXN expression, though FXN deficiency lessened the competency of lipolysis compared with the control or wild type mice. Moreover, we found that the impairment of lipolysis was present at a young age, a few months earlier than hyperglycemia and insulin resistance. Forskolin, an activator of lipolysis, or pioglitazone, an agonist of PPARγ, improved insulin sensitivity in FXN-deficient adipocytes or mice. We uncovered the interplay between FXN expression and lipolysis and found that impairment of lipolysis, particularly the white adipocytes, is an early event, likely, as a primary cause for insulin resistance in FRDA patients at later age.


Subject(s)
Adipocytes, White , Disease Models, Animal , Frataxin , Friedreich Ataxia , Insulin Resistance , Iron-Binding Proteins , Lipolysis , Animals , Friedreich Ataxia/metabolism , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Mice , Iron-Binding Proteins/metabolism , Iron-Binding Proteins/genetics , Adipocytes, White/metabolism , Adipocytes, White/pathology , Male , Lipase/metabolism , Lipase/genetics , Humans
4.
CNS Drugs ; 38(10): 791-805, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39115603

ABSTRACT

The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.


Subject(s)
Friedreich Ataxia , Genetic Therapy , Friedreich Ataxia/therapy , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Humans , Genetic Therapy/methods , Animals , Oxidative Stress/drug effects
5.
Biomolecules ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062522

ABSTRACT

Trinucleotide repeat (TNR) expansion is the cause of over 40 neurodegenerative diseases, including Huntington's disease and Friedreich's ataxia (FRDA). There are no effective treatments for these diseases due to the poor understanding of molecular mechanisms underlying somatic TNR expansion and contraction in neural systems. We and others have found that DNA base excision repair (BER) actively modulates TNR instability, shedding light on the development of effective treatments for the diseases by contracting expanded repeats through DNA repair. In this study, temozolomide (TMZ) was employed as a model DNA base damaging agent to reveal the mechanisms of the BER pathway in modulating GAA repeat instability at the frataxin (FXN) gene in FRDA neural cells and transgenic mouse mice. We found that TMZ induced large GAA repeat contraction in FRDA mouse brain tissue, neurons, and FRDA iPSC-differentiated neural cells, increasing frataxin protein levels in FRDA mouse brain and neural cells. Surprisingly, we found that TMZ could also inhibit H3K9 methyltransferases, leading to open chromatin and increasing ssDNA breaks and recruitment of the key BER enzyme, pol ß, on the repeats in FRDA neural cells. We further demonstrated that the H3K9 methyltransferase inhibitor BIX01294 also induced the contraction of the expanded repeats and increased frataxin protein in FRDA neural cells by opening the chromatin and increasing the endogenous ssDNA breaks and recruitment of pol ß on the repeats. Our study provides new mechanistic insight illustrating that inhibition of H3K9 methylation can crosstalk with BER to induce GAA repeat contraction in FRDA. Our results will open a new avenue for developing novel gene therapy by targeting histone methylation and the BER pathway for repeat expansion diseases.


Subject(s)
Chromatin , DNA Repair , Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Mice, Transgenic , Trinucleotide Repeat Expansion , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Animals , Mice , Trinucleotide Repeat Expansion/genetics , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Chromatin/metabolism , Chromatin/genetics , Humans , DNA Damage , Temozolomide/pharmacology , Neurons/metabolism , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics
6.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980086

ABSTRACT

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Subject(s)
Cerebellar Ataxia , Humans , Cerebellar Ataxia/drug therapy , Cerebellar Ataxia/genetics , Genetic Therapy/methods , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Friedreich Ataxia/therapy
7.
Cells ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920668

ABSTRACT

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Animals , Humans , Friedreich Ataxia/genetics , Gene Expression Regulation , Iron-Binding Proteins/genetics
8.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891993

ABSTRACT

Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Molecular Dynamics Simulation , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Iron-Binding Proteins/genetics , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/metabolism , Mutation, Missense , Computer Simulation , Genetic Variation
10.
Stem Cell Res ; 79: 103477, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936158

ABSTRACT

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Friedreich Ataxia , Induced Pluripotent Stem Cells , Nerve Tissue Proteins , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Friedreich Ataxia/metabolism , Induced Pluripotent Stem Cells/metabolism , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Line , Cell Differentiation , Frataxin
11.
Biochimie ; 224: 71-79, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38750879

ABSTRACT

The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Frataxin , Iron-Binding Proteins , Longevity , Neuroglia , Animals , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Neuroglia/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Disease Models, Animal , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolism , Oxidative Stress/drug effects , Drosophila/genetics , Animals, Genetically Modified
12.
PLoS One ; 19(5): e0303969, 2024.
Article in English | MEDLINE | ID: mdl-38814901

ABSTRACT

BACKGROUND: The left ventricular (LV) changes which occur in Friedreich ataxia (FRDA) are incompletely understood. METHODS: Cardiac magnetic resonance (CMR) imaging was performed using a 1.5T scanner in subjects with FRDA who are homozygous for an expansion of an intron 1 GAA repeat in the FXN gene. Standard measurements were performed of LV mass (LVM), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). Native T1 relaxation time and the extracellular volume fraction (ECV) were utilised as markers of left ventricular (LV) diffuse myocardial fibrosis and late gadolinium enhancement (LGE) was utilised as a marker of LV replacement fibrosis. FRDA genetic severity was assessed using the shorter FXN GAA repeat length (GAA1). RESULTS: There were 93 subjects with FRDA (63 adults, 30 children, 54% males), 9 of whom had a reduced LVEF (<55%). A LVEDV below the normal range was present in 39%, a LVM above the normal range in 22%, and an increased LVM/LVEDV ratio in 89% subjects. In adults with a normal LVEF, there was an independent positive correlation of LVM with GAA1, and a negative correlation with age, but no similar relationships were seen in children. GAA1 was positively correlated with native T1 time in both adults and children, and with ECV in adults, all these associations independent of LVM and LVEDV. LGE was present in 21% of subjects, including both adults and children, and subjects with and without a reduced LVEF. None of GAA1, LVM or LVEDV were predictors of LGE. CONCLUSION: An association between diffuse interstitial LV myocardial fibrosis and genetic severity in FRDA was present independently of FRDA-related LV structural changes. Localised replacement fibrosis was found in a minority of subjects with FRDA and was not associated with LV structural change or FRDA genetic severity in subjects with a normal LVEF.


Subject(s)
Friedreich Ataxia , Gadolinium , Heart Ventricles , Magnetic Resonance Imaging , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/diagnostic imaging , Friedreich Ataxia/pathology , Friedreich Ataxia/complications , Male , Female , Adult , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Child , Adolescent , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Contrast Media , Stroke Volume , Fibrosis , Frataxin
13.
Hum Genomics ; 18(1): 50, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778374

ABSTRACT

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Subject(s)
Biomarkers , Friedreich Ataxia , MicroRNAs , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Friedreich Ataxia/blood , MicroRNAs/genetics , MicroRNAs/blood , Male , Biomarkers/blood , Prognosis , Female , Adult , RNA-Seq , Adolescent , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Child , Young Adult , Middle Aged , Child, Preschool , ROC Curve , Case-Control Studies
14.
Mov Disord ; 39(7): 1088-1098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38686449

ABSTRACT

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia , Iron , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/blood , Friedreich Ataxia/metabolism , Female , Male , Adult , Iron/metabolism , Liver/metabolism , Liver/pathology , Middle Aged , Magnetic Resonance Imaging , Young Adult , Spleen/metabolism , Leukocytes, Mononuclear/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Ferritins/blood , Ferritins/metabolism , Hepcidins/genetics , Hepcidins/blood , Hepcidins/metabolism , Pancreas/metabolism , Pancreas/pathology
16.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38631900

ABSTRACT

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Subject(s)
Frataxin , Friedreich Ataxia , Succinates , Animals , Mice , Butyrates , Frataxin/genetics , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Glucose , Microglia/metabolism
17.
Expert Opin Pharmacother ; 25(5): 529-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622054

ABSTRACT

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Humans , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Genetic Therapy/methods , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Iron-Binding Proteins/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Triterpenes
18.
Ann Clin Transl Neurol ; 11(5): 1290-1300, 2024 May.
Article in English | MEDLINE | ID: mdl-38556905

ABSTRACT

OBJECTIVES: Friedreich ataxia (FRDA) is a rare genetic disorder caused by mutations in the FXN gene, leading to progressive coordination loss and other symptoms. The recently approved omaveloxolone targets this condition but is limited to patients over 16 years of age, highlighting the need for pediatric treatments due to the disorder's early onset and more rapid progression in children. This population also experiences increased non-neurological complications; the FACHILD study aimed to augment and expand the knowledge about the natural history of the disease and clinical outcome assessments for trials in children in FRDA. METHODS: The study enrolled 108 individuals aged 7-18 years with a confirmed FRDA diagnosis, with visits occurring from October 2017 to November 2022 across three institutions. Several measures were introduced to minimize the impact of the COVID-19 pandemic, including virtual visits. Outcome measures centered on the mFARS score and its subscores, and data were analyzed using mixed models for repeated measures. For context and to avoid misinterpretation, the analysis was augmented with data from patients enrolled in the Friedreich's Ataxia Clinical Outcome Measures Study. RESULTS: Results confirmed the general usefulness of the mFARS score in children, but also highlighted issues, particularly with the upper limb subscore (FARS B). Increased variability, limited homogeneity across study subgroups, and potential training effects might limit mFARS application in clinical trials in pediatric populations. INTERPRETATION: The FARS E (Upright Stability) score might be a preferred outcome measure in this patient population.


Subject(s)
Friedreich Ataxia , Humans , Friedreich Ataxia/physiopathology , Friedreich Ataxia/genetics , Friedreich Ataxia/diagnosis , Child , Adolescent , Male , Female , COVID-19/complications , Outcome Assessment, Health Care , Severity of Illness Index
19.
Curr Opin Pediatr ; 36(3): 331-341, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38655812

ABSTRACT

PURPOSE OF REVIEW: We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS: We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY: Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.


Subject(s)
Movement Disorders , Child , Humans , Deep Brain Stimulation , Friedreich Ataxia/therapy , Friedreich Ataxia/genetics , Genetic Therapy/methods , Movement Disorders/therapy , Precision Medicine/methods , Rett Syndrome/genetics , Rett Syndrome/therapy , Tourette Syndrome/therapy , Tourette Syndrome/genetics
20.
Mov Disord ; 39(6): 965-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509638

ABSTRACT

BACKGROUND: Patient-focused outcomes present a central need for trial-readiness across all ataxias. The Activities of Daily Living part of the Friedreich Ataxia Rating Scale (FARS-ADL) captures functional impairment and longitudinal change but is only validated in Friedreich Ataxia. OBJECTIVE: Validation of FARS-ADL regarding disease severity and patient-meaningful impairment, and its sensitivity to change across genetic ataxias. METHODS: Real-world registry data of FARS-ADL in 298 ataxia patients across genotypes were analyzed, including (1) cross-correlation with FARS-stage, Scale for the Assessment and Rating of Ataxia (SARA), Patient-Reported Outcome Measure (PROM)-ataxia, and European Quality of Life 5 Dimensions visual analogue scale (EQ5D-VAS); (2) sensitivity to change within a trial-relevant 1-year median follow-up, anchored in Patient Global Impression of Change (PGI-C); and (3) general linear modeling of factors age, sex, and depression (nine-item Patient Health Questionnaire [PHQ-9]). RESULTS: FARS-ADL correlated with overall disability (rhoFARS-stage = 0.79), clinical disease severity (rhoSARA = 0.80), and patient-reported impairment (rhoPROM-ataxia = 0.69, rhoEQ5D-VAS = -0.37), indicating comprehensive construct validity. Also at item level, and validated within genotype (SCA3, RFC1), FARS-ADL correlated with the corresponding SARA effector domains; and all items correlated to EQ5D-VAS quality of life. FARS-ADL was sensitive to change at a 1-year interval, progressing only in patients with worsening PGI-C. Minimal important change was 1.1. points based on intraindividual variability in patients with stable PGI-C. Depression was captured using FARS-ADL (+0.3 points/PHQ-9 count) and EQ5D-VAS, but not FARS-stage or SARA. CONCLUSION: FARS-ADL reflects both disease severity and patient-meaningful impairment across genetic ataxias, with sensitivity to change in trial-relevant timescales in patients perceiving change. It thus presents a promising patient-focused outcome for upcoming ataxia trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Activities of Daily Living , Humans , Male , Female , Adult , Middle Aged , Severity of Illness Index , Quality of Life , Patient Reported Outcome Measures , Ataxia/physiopathology , Ataxia/diagnosis , Friedreich Ataxia/physiopathology , Friedreich Ataxia/diagnosis , Friedreich Ataxia/genetics , Reproducibility of Results , Aged , Registries , Young Adult , Minimal Clinically Important Difference
SELECTION OF CITATIONS
SEARCH DETAIL