Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.389
Filter
1.
Rapid Commun Mass Spectrom ; 38(22): e9906, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39226917

ABSTRACT

RATIONALE: The oxygen stable isotope ratio (δ18O) of the sugar-rich fraction of fruit juice is important as a tracer of the geographical origin of raw material. This study sought to minimize the inter-day variation of δ18O attributable to the influence of water to accurately monitor geographical origin labeling. METHODS: Two drying devices (freeze dryer and vacuum oven) were compared. Then, two humidity levels (normal and low humidity) at which the samples were placed after drying were compared. The low-humidity environment was constructed using a glove bag and pure argon gas. δ18O was measured using thermal conversion elemental analyzer/isotope ratio mass spectrometry. Improvements were made to the measurement method based on aforementioned analyses results, and the performance of the initial and improved methods was compared. RESULTS: δ18O of juice dried in a vacuum oven was 3.30‰ lower than that of juice dried in a freeze dryer. Moreover, δ18O of juice samples exposed to normal humidity was 3.74‰ lower than that of samples exposed to low humidity. The combined inter-day and intra-day standard deviation was reduced from 1.20‰ in the initial method to 0.42‰ in the improved method. CONCLUSIONS: This study describes a pretreatment method for δ18O measurement in the sugar-rich fraction of fruit juice with less inter-day variation, and it will be useful for monitoring geographical origin labeling.


Subject(s)
Fruit and Vegetable Juices , Mass Spectrometry , Oxygen Isotopes , Oxygen Isotopes/analysis , Fruit and Vegetable Juices/analysis , Mass Spectrometry/methods , Humidity , Sugars/analysis , Sugars/chemistry
2.
Cell Physiol Biochem ; 58(4): 445-457, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39230349

ABSTRACT

BACKGROUND/AIMS: Lemons (Citrus limon ) contain various nutrients and are among the most popular citrus fruit. Besides their antioxidant, anticancer, antibacterial, and anti-inflammatory properties, clinical studies have indicated their anti-allergic properties. METHODS: Using the differential-interference contrast (DIC) microscopy, we examined the effects of lemon juice and peel constituents, such as citric acid, ascorbic acid, hesperetin and eriodictyol, on the degranulation from rat peritoneal mast cells. Using fluorescence imaging with a water-soluble dye, Lucifer Yellow, we also examined their effects on the deformation of the plasma membrane. RESULTS: Lemon juice dose-dependently decreased the number of degranulated mast cells. At concentrations equal to or higher than 0.25 mM, citric acid, hesperetin, and eriodictyol significantly reduced the number of degranulating mast cells in a dose-dependent manner, while ascorbic acid required much higher doses to exert significant effects. At 1 mM, citric acid, hesperetin, and eriodictyol almost completely inhibited exocytosis and washed out the Lucifer Yellow trapped on the mast cell surface, while ascorbic acid did not. CONCLUSION: This study provides in vitro evidence for the first time that lemon constituents, such as citric acid, hesperetin, and eriodictyol, potently exert mast cell-stabilizing properties. These properties are attributable to their inhibitory effects on plasma membrane deformation in degranulating mast cells.


Subject(s)
Ascorbic Acid , Citrus , Flavanones , Hesperidin , Mast Cells , Animals , Mast Cells/drug effects , Mast Cells/metabolism , Citrus/chemistry , Rats , Ascorbic Acid/pharmacology , Male , Hesperidin/pharmacology , Hesperidin/chemistry , Flavanones/pharmacology , Flavanones/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Cell Degranulation/drug effects , Fruit and Vegetable Juices/analysis , Peritoneum/cytology , Rats, Sprague-Dawley , Exocytosis/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Fruit/chemistry , Isoquinolines
3.
Food Microbiol ; 124: 104600, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244359

ABSTRACT

This study aimed to assess the impact of Saccharomyces cerevisiae and different non-Saccharomyces cerevisiae (Zygosaccharomyces bailii, Hanseniaspora opuntiae and Zygosaccharomyces rouxii) on the volatile compounds and sensory properties of low-alcohol pear beverages fermented from three varieties of pear juices (Korla, Laiyang and Binzhou). Results showed that all three pear juices were favorable matrices for yeasts growth. Non-Saccharomyces cerevisiae exhibited a higher capacity for acetate ester production compared to Saccharomyces cerevisiae, resulting in a significant enhancement in sensory complexity of the beverages. PCA and sensory analysis demonstrated that pear varieties exerted a stronger influence on the crucial volatile components and aroma characteristics of the fermented beverages compared to the yeast species. CA results showed different yeast strains exhibited suitability for the fermentation of specific pear juice varieties.


Subject(s)
Fermentation , Odorants , Pyrus , Saccharomyces cerevisiae , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Pyrus/microbiology , Pyrus/chemistry , Odorants/analysis , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Taste , Humans , Zygosaccharomyces/metabolism , Zygosaccharomyces/growth & development , Hanseniaspora/metabolism , Hanseniaspora/growth & development , Fruit/microbiology , Fruit/chemistry , Saccharomycetales
4.
Food Microbiol ; 124: 104610, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244362

ABSTRACT

This study aimed to assess the impact of adaptation of ten strains of O157:H7 and non-O157 Escherichia coli to low pH (acid shock or slow acidification) and the effects of this exposure or not on the resistance of E. coli strains to UV radiation in orange juice (pH 3.5). The acid-shocked cells were obtained through culture in tryptic soy broth (TSB) with a final pH of 4.8, which was adjusted by hydrochloric, lactic, or citric acid and subsequently inoculated in orange juice at 4 °C for 30 days. No significant differences (p > 0.05) in survival in orange juice were observed between the serotypes O157:H7 and non-O157:H7 for acid-shocked experiments. After slow acidification, where the cells were cultured in TSB supplemented with glucose 1% (TSB + G), a significant increase (p < 0.05) in survival was observed for all strains evaluated. The D-values (radiation dose (J/cm2) necessary to decrease the microbial population by 90%) were determined as the inverse of the slopes of the regressions (k) obtained by plotting log (N/N0). The results show that among the strains tested, E. coli O157:H7 (303/00) and O26:H11 were the most resistant and sensitive strains, respectively. According to our results, the method of acid adaptation contributes to increasing the UV resistance for most of the strains tested.


Subject(s)
Adaptation, Physiological , Citrus sinensis , Escherichia coli O157 , Fruit and Vegetable Juices , Ultraviolet Rays , Escherichia coli O157/radiation effects , Escherichia coli O157/growth & development , Escherichia coli O157/drug effects , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Citrus sinensis/microbiology , Citrus sinensis/chemistry , Hydrogen-Ion Concentration , Escherichia coli/radiation effects , Escherichia coli/drug effects , Acids/pharmacology , Colony Count, Microbial , Food Microbiology , Microbial Viability/radiation effects , Microbial Viability/drug effects , Food Irradiation
5.
Food Microbiol ; 124: 104611, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244364

ABSTRACT

The quality and sensory attributes of juices are influenced by their natural microbiota and the microorganisms found on filtration membranes. This study aimed to assess the influence of natural microbiota and specific contaminants, including Candida krusei, Rhodotorula mucilaginosa, Debaryomyces prosopidis, Ralstonia insidiosa, and Lactiplantibacillus paraplantarum, isolated from cranberry juice and its associated industrial filtration membranes, on the characteristics of cranberry juice. Their growth kinetics and impacts on total phenols, total anthocyanins, total proanthocyanins, total organic acids, pH, titratable acidity, and volatile compounds were assessed. During the 42 h fermentation period, Candida krusei and Ralstonia insidiosa exhibited significant growth, increasing by 1-log and 3-log, respectively. The natural microbiota led to a 7% and 6% reduction in anthocyanins and proanthocyanidins, while Candida krusei and Rhodotorula mucilaginosa caused losses of 10% and 7% in proanthocyanidins, respectively. Organic acid content remained stable, except for an 8% decrease caused by Ralstonia insidiosa. Volatile compounds underwent significant increases, particularly in green (703%), winey (100%), mushroom (306%), and fusel (2678%) notes. These findings underscore the rapid impact of microorganisms from natural microbiota and filtration membranes on cranberry juice characteristics, highlighting the importance for beverage industries to prioritize customer safety and satisfaction.


Subject(s)
Food Handling , Fruit and Vegetable Juices , Microbiota , Proanthocyanidins , Vaccinium macrocarpon , Volatile Organic Compounds , Vaccinium macrocarpon/chemistry , Vaccinium macrocarpon/microbiology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Proanthocyanidins/analysis , Odorants/analysis , Fermentation , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Bacteria/metabolism , Anthocyanins/analysis , Candida/growth & development , Fungi/classification , Fungi/metabolism , Fungi/isolation & purification , Fungi/growth & development
6.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124991

ABSTRACT

The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.


Subject(s)
Freeze Drying , Lonicera , Plant Extracts , Powders , Spray Drying , Freeze Drying/methods , Powders/chemistry , Lonicera/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Fruit and Vegetable Juices/analysis , Polysaccharides/chemistry , Polysaccharides/analysis , Phenols/analysis , Phenols/chemistry
7.
Cell Biochem Funct ; 42(6): e4105, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096031

ABSTRACT

Prediabetes is a risk state that defines a high chance of developing diabetes and cardiovascular disease. Oxidative stress mediated by hyperglycemia-induced production of reactive species could play a crucial role in this context. In the present study, we investigated whether the anion exchange capability mediated by AE1 (SLC4A1), which is sensitive to oxidative stress, was altered in human red blood cells (RBCs) obtained from prediabetic volunteers. In addition, we assessed the precise composition of bioactive compounds and the potential benefits of finger lime juice extract (Citrus australasica, Faustrime cultivar) in counteracting oxidative stress-related functional alterations. Human RBCs from normal and prediabetic volunteers were incubated with 50 µg/mL juice extract for 2 h at 25°C. Juice extract restored alterations of the anion exchange capability mediated by AE1 and prevented the structural rearrangements of AE1 and α/ß-spectrin in prediabetic RBCs. AE1 functional and structural alterations were not associated with an increase in lipid peroxidation or protein oxidation at the level of the plasma membrane. An increased production of intracellular ROS, which provoked the oxidation of hemoglobin to methemoglobin, both reverted by juice extract, was instead observed. Importantly, juice extract also induced a reduction in glycated hemoglobin levels in prediabetic RBCs. Finally, juice extract blunted the overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase and prevented glutathione depletion in prediabetic RBCs. These findings contribute to clarifying cellular and molecular mechanisms related to oxidative stress and glycation events that may influence RBC and systemic homeostasis in prediabetes, identify AE1 as a sensitive biomarker of RBC structural and function alterations in prediabetes and propose finger lime juice extract as a natural antioxidant for the treatment and/or prevention of the complications associated with the prediabetic condition.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Citrus , Erythrocytes , Oxidative Stress , Plant Extracts , Prediabetic State , Humans , Citrus/chemistry , Erythrocytes/metabolism , Erythrocytes/drug effects , Prediabetic State/metabolism , Prediabetic State/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anion Exchange Protein 1, Erythrocyte/metabolism , Oxidative Stress/drug effects , Fruit and Vegetable Juices/analysis , Male , Female , Middle Aged , Adult , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/chemistry
8.
Food Res Int ; 193: 114827, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160041

ABSTRACT

Potentially health-promoting concentrations of flavan-3-ols were previously shown to be retained in apple juices produced with the emerging spiral filter press. Due to the novelty of this technology, the factors governing the stability of flavan-3-ol-rich apple juices have only scarcely been studied. Therefore, we produced flavan-3-ol-rich apple juices and concentrates (16, 40, 70 °Brix) supplemented with ascorbic acid (0.0, 0.2, 1.0 g/L) according to common practice. Flavan-3-ols (DP1-7) and twelve flavan-3-ol reaction products were comprehensively characterized and monitored during storage for 16 weeks at 20 and 37 °C, employing RP-UHPLC- and HILIC-DAD-ESI(-)-QTOF-HR-MS/MS. Flavan-3-ol degradation followed a second-order reaction kinetic, being up to 3.5-times faster in concentrates (70 °Brix) than in single strength juices (16 °Brix). Furthermore, they diminished substantially faster compared to other phenolic compounds. For instance, after 16-weeks at 20 °C, the maximum loss of flavan-3-ols (-70 %) was greater than those of hydroxycinnamic acids (-18 %) and dihydrochalcones (-12 %). We observed that flavan-3-ols formed adducts with sugars and other carbonyls, such as 5-(hydroxymethyl)furfural and the ascorbic acid-derived L-xylosone. Increased degradation rates correlated particularly with increased furan aldehyde levels as found in concentrates stored at elevated temperatures. These insights could be used for optimizing production, distribution, and storage of flavan-3-ol-rich apple juices and other foods and beverages.


Subject(s)
Aldehydes , Ascorbic Acid , Flavonoids , Food Storage , Fruit and Vegetable Juices , Malus , Ascorbic Acid/chemistry , Malus/chemistry , Fruit and Vegetable Juices/analysis , Flavonoids/analysis , Aldehydes/analysis , Food Handling/methods , Sugars/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Filtration , Kinetics , Fruit/chemistry
9.
Anal Chem ; 96(35): 14248-14256, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39167046

ABSTRACT

Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 µM and their mixtures at 5 µM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.


Subject(s)
Europium , Machine Learning , Pesticides , Pesticides/analysis , Europium/chemistry , Thiabendazole/analysis , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Fruit and Vegetable Juices/analysis , Principal Component Analysis , Fluorides/chemistry , Fluorides/analysis
10.
Mikrochim Acta ; 191(9): 539, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39147993

ABSTRACT

3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers. Carbon black/polylactic acid filament was employed, and the design and several printing parameters were optimized to yield the maximum electroanalytical performance using the minimal amount of material. Print speed and extrusion width showed a critical influence on the electroanalytical performance of 3D-PES. Under optimized conditions, the fabrication procedure offered excellent reproducibility (RSD 1.3% in working electrode diameter), speed (< 3 min/unit), and costs (< 0.01 $ in material cost). The 3D-PES was successfully applied to the determination of phloridzin in apple juice. The analytical performance of 3D-PES was compared with an equivalent commercial on-drop screen-printed electrode, yielding similar precision and accuracy but lower sensitivity. However, 3D-PES provides interesting features such as recyclability, biodegradability, low-cost, and the possibility of being manufactured near the point of need, some of which meets several demands of Green Chemistry. This cost-effective printing approach is a green and promising alternative for manufacturing disposable and portable electroanalytical devices, opening new possibilities not only in on-site food analysis but also in point-of-care testing.


Subject(s)
Electrochemical Techniques , Food Analysis , Fruit and Vegetable Juices , Polyesters , Printing, Three-Dimensional , Soot , Soot/chemistry , Polyesters/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/economics , Fruit and Vegetable Juices/analysis , Food Analysis/instrumentation , Food Analysis/economics , Food Analysis/methods , Electrodes , Malus/chemistry , Cost-Benefit Analysis , Limit of Detection
11.
Molecules ; 29(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39202817

ABSTRACT

Beer, as an ancient and widely consumed alcoholic beverage, holds a rich cultural heritage and history. In recent years, fruit beer has gained significant attention as a distinct beer type produced by incorporating fruit juice into traditional beer ingredients. This study employed headspace solid-phase microextraction-gas chromatography-mass spectrometry techniques, redundancy analysis, and orthogonal projections to latent structures discriminant analysis to analyze the sensory evaluation, physicochemical properties, organic acids, and volatile organic compounds (VOCs) of loquat beer with different proportions of loquat juice. The results shown that the addition of an appropriate amount of loquat juice (40%) enhanced the overall sensory quality of the beer; as the proportion of loquat juice increased, the contents of malic acid and tartaric acid significantly increased (p < 0.05). A total of 100 VOCs were identified, among which 23 key VOCs (VIP > 1, p < 0.05) represented the most important characteristic flavor components in loquat beer based on their odor activity value (OAV). This study holds significant importance for the value-added processing and economic development of loquat.


Subject(s)
Beer , Eriobotrya , Fruit and Vegetable Juices , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Eriobotrya/chemistry , Beer/analysis , Fruit and Vegetable Juices/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Humans , Solid Phase Microextraction , Taste
12.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201566

ABSTRACT

Fermenting fruit juices with lactic acid bacteria (LAB) is a sustainable method to enhance fruit harvests and extend shelf life. This study focused on blackberries, rich in antioxidants with proven health benefits. In this research, we examined the effects of fermentation (48 h at 37 °C) at 28 days on whey-supplemented (WH, 1:1) blackberry juice (BJ) inoculated with two LAB mixtures. Consortium 1 (BJWH/C1) included Levilactobacillus brevis, Lactiplantibacillus plantarum, and Pediococcus acidilactici, while consortium 2 (BJWH/C2) comprised Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. All of the strains were previously isolated from aguamiel, pulque, and fermented milk. Throughout fermentation and storage, several parameters were evaluated, including pH, lactic acid production, viscosity, stability, reducing sugars, color, total phenolic content, anthocyanins, and antioxidant capacity. Both consortia showed a significant increase in LAB count (29-38%) after 16 h. Sample BJWH/C2 demonstrated the best kinetic characteristics, with high regression coefficients (R2 = 0.97), indicating a strong relationship between lactic acid, pH, and fermentation/storage time. Despite some fluctuations during storage, the minimum LAB count remained at 9.8 log CFU/mL, and lactic acid content increased by 95%, with good storage stability. Notably, sample BJWH/C2 increased the total phenolic content during storage. These findings suggest that adding whey enhances biomass and preserves physicochemical properties during storage.


Subject(s)
Antioxidants , Fermentation , Fruit and Vegetable Juices , Lactobacillales , Whey , Antioxidants/metabolism , Whey/metabolism , Whey/chemistry , Whey/microbiology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Lactobacillales/metabolism , Rubus/chemistry , Rubus/metabolism , Rubus/microbiology , Food Storage/methods , Hydrogen-Ion Concentration , Microbial Consortia/physiology , Lactic Acid/metabolism
13.
Food Res Int ; 192: 114846, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147475

ABSTRACT

Patulin (PAT) is a mycotoxin commonly found in fruits and vegetables, prompting the need for effective removal and detoxification methods, which have garnered significant research attention in recent years. Among these methods, the utilization of microbial-derived enzymes stands out due to their mild operating conditions, specificity in targeted functional groups, and the production of non-toxic by-products, making it a preferred degradation approach. In this study, a novel PAT-degrading enzyme derived from Cyberlindnera fabianii (Cyfa-SDR) was identified, demonstrating its highest catalytic activity at pH 7.0 and 80 °C against PAT. This temperature tolerance level represents the highest reported for PAT-degrading enzymes to date. The enzyme was further characterized as a short-chain dehydrogenase through analysis of its amino acid composition, conserved GXXXGXG motif, and dependency on NADPH. Moreover, the study evaluated the efficiency of PAT degradation by Cyfa-SDR at varying substrate and enzyme concentrations, surpassing the performance of other PAT-degrading enzymes, thus highlighting its substantial potential for the biological control of PAT. In conclusion, the enzymatic treatment using the PAT-degrading enzyme Cyfa-SDR presents a viable and promising solution for enhancing the quality and safety of fruit juice.


Subject(s)
Patulin , Patulin/metabolism , Patulin/chemistry , Hydrogen-Ion Concentration , Temperature , Food Contamination/analysis , Fruit and Vegetable Juices/analysis
14.
Sci Rep ; 14(1): 19971, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39198517

ABSTRACT

Acute myeloid leukemia (AML) is a hematologic neoplasm, characterized by a blockage of differentiation and an unconstrained proliferation of immature myeloid cells. Recently, the survival of leukemia patients has increased thanks to the use of differentiating agents, though these may cause serious side effects. Hence, the search for safer differentiating compounds is necessary. Our aim was to assess the pro-differentiating effects of a flavonoid-rich extract of bergamot juice (BJe) in human monocytic leukemia THP-1 cells, an in vitro AML model. For the first time, we showed that treatment with BJe induced differentiation of THP-1 cells, changes in cell morphology and increased expression of differentiation-associated surface antigens CD68, CD11b and CD14. Moreover, BJe enhanced protein levels of autophagy-associated markers, such as Beclin-1 and LC3, as well as induced the phosphorylation of the MAPKs JNK, ERK and p38, hence suggesting a potential mechanism underlying its antiproliferative effects. Indeed, parallel experiments highlighted that BJe was able to hamper THP-1 cell growth. In conclusion, our study suggests that BJe induces the differentiation of THP-1 cells and reduces their proliferation, highlighting its potential in differentiation therapy of AML.


Subject(s)
Autophagy , Cell Differentiation , Citrus , Flavonoids , Plant Extracts , Humans , Citrus/chemistry , Flavonoids/pharmacology , Cell Differentiation/drug effects , THP-1 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Autophagy/drug effects , Cell Proliferation/drug effects , Fruit and Vegetable Juices/analysis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism
15.
Food Chem ; 460(Pt 2): 140606, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089032

ABSTRACT

Fresh, unpasteurized carrot juice is a popular element of the everyday diet of many consumers, and as such the matter of the juice's microbial safety remains an important one. Imaging flow cytometry (FCM) allows a fast enumeration and determination of cells, as well as their further differentiation. However, carrot juice is a difficult food product to analyze with the use of FCM due to interference from autofluorescence and the presence of plant debris. In this research, we aimed to obtain an effective and repeatable protocol for the preparation of carrot juice samples for FCM analysis. Through experimental and software-based means we successfully determined a reliable protocol for the preparation of fresh, unpasteurized carrot juice, which consisted of a sequence of filtering, centrifugation, enzyme treatment, and finally the implementation of the Machine Learning protocol for the best result.


Subject(s)
Daucus carota , Flow Cytometry , Fruit and Vegetable Juices , Daucus carota/chemistry , Daucus carota/microbiology , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Bacteria/isolation & purification , Bacteria/classification , Food Contamination/analysis , Food Microbiology/methods
16.
J Chromatogr A ; 1733: 465259, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39178659

ABSTRACT

Aluminum-based metal organic framework composite containing ionic liquid was prepared and used as sorbent for extraction of sixteen polycyclic aromatic hydrocarbons in list of priority pollutants of United States Environmental Protection Agency before their analysis by gas chromatography/mass spectrometry. The dispersive micro solid-phase extraction method, known as a simple and fast method, was preferred as the extraction method. The optimized parameter conditions were 5 mL of sample solution, 10 min sonication by ultrasonic bath, 30 mg of sorbent, 30 °C extraction temperature, 0.1 mL of hexane as elution solvent with 5 min elution time. The suggested method presented that limit of detection and limit of quantification were in the range of 0.01-0.10 µg l-1, and 0.04-0.33 µg L-1, respectively. The intra-day and inter-day repeatability were within the ranges of 1.18-4.88 % and 1.02-5.06 %, respectively. The recoveries for polycyclic aromatic hydrocarbons in peach juice, cherry juice, tap water and rain water samples were obtained in the range of 84.9-99.9 % for spiked 5, 50 and 100 µg l-1 standard polycyclic aromatic hydrocarbons solution.


Subject(s)
Fruit and Vegetable Juices , Gas Chromatography-Mass Spectrometry , Ionic Liquids , Limit of Detection , Metal-Organic Frameworks , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Ionic Liquids/chemistry , Fruit and Vegetable Juices/analysis , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Gas Chromatography-Mass Spectrometry/methods , Sonication , Solid Phase Microextraction/methods , Reproducibility of Results
17.
Food Chem ; 460(Pt 3): 140756, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39121782

ABSTRACT

Vitamin D plays a crucial role in bone, immunology, and neurophysiological functions but has inadequate bioavailability in the human body. In this paper, six different liquid beverages were used for vitamin D3 fortification, investigating the effect of different food matrices on the bioaccessibility of vitamin D. Not from concentrate (NFC) apple juice (9.34%) and NFC orange juice (8.12%) presented about 20% higher bioaccessibility of vitamin D3 than soybean and skim milk, and achieved a similar value of whole milk (8.04%). Meanwhile, the bioaccessibility of NFC apple and orange juice was markedly about 120% higher than that of apple clear juice. From the correlation analysis, the bioaccessibility of VD3 indicated significant correlations with small intestine retention (0.82) and viscosity (0.66). But small intestinal particle size showed a negative effect on bioaccessibility (-0.78). Therefore, food components, delivery matrices, and physicochemical properties of digesta were key factors to achieve higher bioaccessibility for guiding formulation design.


Subject(s)
Biological Availability , Cholecalciferol , Fruit and Vegetable Juices , Milk , Cholecalciferol/analysis , Cholecalciferol/metabolism , Cholecalciferol/chemistry , Animals , Milk/chemistry , Milk/metabolism , Fruit and Vegetable Juices/analysis , Humans , Malus/chemistry , Malus/metabolism , Food, Fortified/analysis , Beverages/analysis , Viscosity , Particle Size , Digestion
18.
Rocz Panstw Zakl Hig ; 75(2): 125-134, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140118

ABSTRACT

BACKGROUND: Red fruits are characterised by a particularly high content of bioactive compounds, e.g. anthocyanins, tannins, pectins, vitamins and minerals. Dietary supply of proper amounts of antioxidants is essential to reduce oxidative stress, and thus is an important element in the prevention of lifestyle diseases. OBJECTIVE: The aim of the study was to evaluate and compare the content of polyphenols in selected red fruit juices (chokeberry, elderberry, pomegranate, cranberry), as well as to assess the impact of storage time on the content of these compounds in the analysed samples. MATERIAL AND METHODS: The research material consisted of 17 juices (100%): 3 chokeberry juices, 4 elderberry juices, 5 pomegranate juices and 5 cranberry juices, which differed in terms of the manufacturer, type, price range, country of origin and production method. The total polyphenol content was measured by spectrophotometry using the Folin�Ciocalteu reagent. The procedure was based on a modified method described by Waterhouse. Active acidity (pH) was measured with the potentiometric method using a pH-meter and the sucrose content was measured using a refractometer. RESULTS: The highest mean content of polyphenolic compounds was found in chokeberry and elderberry juices. Juice storage time did not reduce the mean content of polyphenolic compounds. The highest sucrose content was found in chokeberry juices and the lowest in cranberry juice. CONCLUSIONS: Chokeberry and elderberry juices had the highest content of polyphenols among the tested products. Juices stored after opening in accordance with the manufacturer's instructions (at 4°C) do not lose their nutritional properties.


Subject(s)
Antioxidants , Fruit and Vegetable Juices , Fruit , Polyphenols , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Antioxidants/analysis , Polyphenols/analysis , Phenols/analysis , Humans , Vaccinium macrocarpon/chemistry , Pomegranate/chemistry , Sambucus/chemistry
19.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952166

ABSTRACT

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Subject(s)
Ocimum basilicum , Plant Mucilage , Rheology , Seeds , Ocimum basilicum/chemistry , Seeds/chemistry , Plant Mucilage/chemistry , Animals , Milk/chemistry , Viscosity , Deglutition Disorders , Malus/chemistry , Fruit and Vegetable Juices/analysis , Humans , Water , Powders , Lubrication
20.
Anal Methods ; 16(28): 4827-4834, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38967314

ABSTRACT

A cloud point method was developed and applied for the first time to extract and preconcentrate thiabendazole (TBZ) from commercial whole grape juice samples, with determination by high performance liquid chromatography coupled to electrochemical detection (HPLC/EC), using a cathodically pretreated boron-doped diamond electrode (BDD). The best conditions for extraction and preconcentration of TBZ by cloud point extraction (CPE) were performed at pH 6.0, by adding 1 mL of the surfactant Tergitol TMN-6 at 10% (mass-to-mass ratio), without heating (at 27 °C) and ultrasonic stirring time of (20 kHz) for 60 min. The HPLC/EC determination was duly validated in a C8 column, in mobile phase with a 69 : 31 ratio (V/V) of phosphate buffer (pH 7.0):ACN, at a flow rate of 1.2 mL min-1 and electrochemical detection with BDD electrode by applying 1.40 V × Ag/AgCl (3.0 mol L-1). Under these conditions, the procedure showed a preconcentration factor (FC) of 21.7, and limits of detection (LOD) and quantification (LOQ) of 6.64 × 10-9 mol L-1 (or 1.33 µg L-1) and 1.66 × 10-8 mol L-1 (or 3.34 µg L-1), respectively. The method provided a percent recovery of 81% to 98%, with a coefficient of variation between 3% and 15%.


Subject(s)
Electrochemical Techniques , Fruit and Vegetable Juices , Thiabendazole , Vitis , Chromatography, High Pressure Liquid/methods , Thiabendazole/analysis , Thiabendazole/isolation & purification , Fruit and Vegetable Juices/analysis , Vitis/chemistry , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Pesticides/analysis , Food Contamination/analysis
SELECTION OF CITATIONS
SEARCH DETAIL