Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 990
Filter
1.
Int J Med Mushrooms ; 26(8): 59-73, 2024.
Article in English | MEDLINE | ID: mdl-38967211

ABSTRACT

Cordyceps militaris, a medicinal fungus rich in cordycepin, shows promise in treating diseases such as cancer, respiratory issues, and COVID-19. This study examines the impact of different Taiwanese rice varieties on its solid-state fermentation, focusing on optimizing cordycepin production. The results indicated that the cordycepin yield was indeed affected by the type of rice used. In terms of the fruiting bodies, germ rice resulted in the highest yield (13.1 ± 0.36 mg/g), followed by brown rice (11.9 ± 0.26 mg/g). In the rice culture medium (RCM), brown rice led to the highest yield (4.77 ± 0.06 mg/g). Using gas chromatography-mass spectrometry and untargeted metabolomics, the study identifies four key volatile components linked to cordycepin, providing insights into developing functional rice porridge products. These findings are significant for advancing cordycepin mass production and offering dietary options for older individuals.


Subject(s)
Cordyceps , Deoxyadenosines , Fermentation , Gas Chromatography-Mass Spectrometry , Metabolomics , Oryza , Deoxyadenosines/analysis , Deoxyadenosines/metabolism , Oryza/chemistry , Oryza/microbiology , Cordyceps/metabolism , Cordyceps/chemistry , Cordyceps/growth & development , Culture Media/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Taiwan
2.
Int J Biol Macromol ; 273(Pt 1): 133046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857726

ABSTRACT

Chitin-glucan complex (CGC) is an emerging novel prebiotic with numerous physiological activities in amelioration of clinical manifestations. In the present work, natural deep eutectic solvent (NADES), ultrasonication, and submerged fermentation using probiotic microorganisms were deployed for the extraction of CGC from Shiitake fruiting bodies. CGC obtained through non-ultrasonication assisted fermentation employing Lactiplantibacillus plantarum exhibited maximum polysaccharide yield (27.86 ± 0.82 % w/w). However, based on antioxidant potential, NADES combination of urea: glycerol (1:1 M ratio) was selected for further characterization. The rheological behavior of CGC under optimized conditions showed shear thinning property in both 0.1 M NaCl and salt-free solution. FTIR, 1H-(1D), and 2D 1H1H Homonuclear NMR spectra displayed distinctive patterns associated with ß-glycosidic linkage and ß-d-glucopyranose sugar moiety. XRD profiles of CGC exhibited characteristic peaks at 2θ = 23°, 25°, and 28° with corresponding hkl values of (220), (101), and (130) lattice planes, respectively. Enhanced radical scavenging activities were noticed due to the triple helical structure and anionic nature of CGC. CGC exhibited potential prebiotic activity (prebiotic score 118-134 %) and short chain fatty acids liberation (maximum 9.99 ± 0.41 mM by Lactobacillus delbrueckii). Simulated static in-vitro digestion demonstrated that CGC withstands acidic environment of gastric phase, which indicated its suitability for use as a prebiotic in nutraceutical-enriched food products.


Subject(s)
Chitin , Deep Eutectic Solvents , Fruiting Bodies, Fungal , Glucans , Prebiotics , Shiitake Mushrooms , Glucans/chemistry , Glucans/isolation & purification , Fruiting Bodies, Fungal/chemistry , Chitin/chemistry , Chitin/isolation & purification , Shiitake Mushrooms/chemistry , Deep Eutectic Solvents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Fermentation , Lactobacillus plantarum/metabolism
3.
PLoS One ; 19(6): e0304614, 2024.
Article in English | MEDLINE | ID: mdl-38870218

ABSTRACT

Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.


Subject(s)
Fruiting Bodies, Fungal , Fruiting Bodies, Fungal/chemistry , Chitin/chemistry , Chitin/metabolism , Cell Wall/chemistry , Coriolaceae/metabolism , Coriolaceae/chemistry , Chitosan/chemistry , Compressive Strength , Glucans/chemistry , Glucans/metabolism , Porosity
4.
Phytochemistry ; 224: 114168, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823569

ABSTRACT

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Subject(s)
Antimalarials , Fruiting Bodies, Fungal , Ganoderma , Plasmodium falciparum , Triterpenes , Ganoderma/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Plasmodium falciparum/drug effects , Fruiting Bodies, Fungal/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Animals , Molecular Structure , Vero Cells , Chlorocebus aethiops , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/chemistry , Lanosterol/isolation & purification , Parasitic Sensitivity Tests , Structure-Activity Relationship , Dose-Response Relationship, Drug
5.
Int J Med Mushrooms ; 26(6): 13-23, 2024.
Article in English | MEDLINE | ID: mdl-38801085

ABSTRACT

Brazil-grown outdoor-cultivated Agaricus brasiliensis KA21 fruiting body (KA21) significantly increases the production of serum anti-beta-glucan antibody. Therefore, KA21 ingestion may be useful for the prevention and alleviation of fungal infections. This study aimed to determine the effects of KA21 in fungal infections in animals. KA21 was administered to nine dogs infected with Malassezia. Notably, the anti-beta-glucan antibody titer remained unchanged or tended to decrease in the oral steroid arm, whereas in the non-steroid arm, antibody titer increased in almost all animals after KA21 ingestion. Dogs showing improved clinical symptoms exhibited increased anti-beta-glucan antibody titers. The results of this study suggest that KA21 ingestion may alleviate the symptoms of Malassezia and other fungal infections and that continuous ingestion may help prolong recurrence-free intervals. Additionally, the ingestion of KA21 during oral steroid dosage reduction or discontinuation may enable smoother steroid withdrawal.


Subject(s)
Agaricus , Dog Diseases , Fruiting Bodies, Fungal , Malassezia , Animals , Dogs , Agaricus/chemistry , Fruiting Bodies, Fungal/chemistry , Malassezia/drug effects , Dog Diseases/microbiology , Dog Diseases/drug therapy , Dermatomycoses/veterinary , Dermatomycoses/prevention & control , Dermatomycoses/drug therapy , Dermatomycoses/microbiology , beta-Glucans/administration & dosage , beta-Glucans/pharmacology , Male , Brazil , Dermatitis/drug therapy , Dermatitis/veterinary , Dermatitis/microbiology , Dermatitis/prevention & control , Female , Antibodies, Fungal/blood
6.
Int J Med Mushrooms ; 26(6): 53-68, 2024.
Article in English | MEDLINE | ID: mdl-38801087

ABSTRACT

The purification of a fibrinolytic enzyme from the fruiting bodies of wild-growing medicinal mushroom, Pycnoporus coccineus was achieved through a two-step procedure, resulting in its homogeneity. This purification process yielded a significant 4.13-fold increase in specific activity and an 8.0% recovery rate. The molecular weight of P. coccineus fibrinolytic enzyme (PCFE) was estimated to be 23 kDa using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. PCFE demonstrated its optimal activity at a temperature of 40 °C and pH 8. Notably, the enzymatic activity was inhibited by the presence of zinc or copper metal ions, as well as serine protease inhibitors, such as phenylmethylsulfonyl fluoride and 4-amidinophenylmethanesulfonyl fluoride. PCFE exhibited remarkable specificity towards a synthetic chromogenic substrate for thrombin. The enzyme demonstrated the Michaelis-Menten constant (Km), maximal velocity (V ), and catalytic rate constant (Kcat) values of 3.01 mM, 0.33 mM min-1 µg-1, and 764.1 s-1, respectively. In vitro assays showed PCFE's ability to effectively degrade fibrin and blood clots. The enzyme induced alterations in the density and structural characteristics of fibrin clots. PCFE exhibited significant effects on various clotting parameters, including recalcification time, activated partial thromboplastin time, prothrombin time, serotonin secretion from thrombin-activated platelets, and thrombin-induced acute thromboembolism. These findings suggest that P. coccineus holds potential as an antithrombotic biomaterials and resources for cardiovascular research.


Subject(s)
Fibrinolytic Agents , Pycnoporus , Serine Proteases , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/chemistry , Serine Proteases/isolation & purification , Serine Proteases/pharmacology , Serine Proteases/metabolism , Serine Proteases/chemistry , Animals , Pycnoporus/enzymology , Molecular Weight , Fruiting Bodies, Fungal/chemistry , Hydrogen-Ion Concentration , Temperature , Humans , Fibrin/metabolism , Fungal Proteins/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/pharmacology
7.
Phytochemistry ; 224: 114148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763311

ABSTRACT

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Subject(s)
Fruiting Bodies, Fungal , Protective Agents , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Hep G2 Cells , Fruiting Bodies, Fungal/chemistry , Reishi/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Molecular Structure , Cell Survival/drug effects , Acetaminophen/pharmacology , Structure-Activity Relationship , Liver/drug effects , Dose-Response Relationship, Drug
8.
Fitoterapia ; 176: 106031, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768793

ABSTRACT

Five undescribed meroterpenoids, baosglucidnes A - E (1-5), were isolated from the fruiting bodies of Ganoderma lucidum. Among them, baosglucidne B (2) as a racemic mixture was obtained. Chiral HPLC was employed to separate a pair of enantiomers (+)-2 and (-)-2. The structures and stereochemical features of these substances were characterized by utilizing spectroscopic data and ECD calculations. Finally, the results of anti-renal fibrosis activity evaluation showed that baosglucidne E (5) could inhibit the expression of collagen I in TGF-ß1-induced rat kidney proximal tubular cells at 20 µM.


Subject(s)
Reishi , Terpenes , Animals , Reishi/chemistry , Rats , Terpenes/pharmacology , Terpenes/isolation & purification , Molecular Structure , Fruiting Bodies, Fungal/chemistry , Transforming Growth Factor beta1/metabolism , Fibrosis , China , Kidney Diseases/drug therapy , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Collagen Type I/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects
9.
J Agric Food Chem ; 72(22): 12810-12821, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778434

ABSTRACT

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.


Subject(s)
Agrocybe , Fruiting Bodies, Fungal , Polysaccharides , Agrocybe/chemistry , Agrocybe/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Alkalies/chemistry
10.
Int J Med Mushrooms ; 26(5): 73-86, 2024.
Article in English | MEDLINE | ID: mdl-38780424

ABSTRACT

Polyporoid fungi represent a vast source of bioactive compounds with potential pharmacological applications. The importance of polyporoid fungi in traditional Chinese medicine has led to an extensive use of some species of Ganoderma for promoting health and longevity because their consumption is associated with several bioactivities. Nevertheless, bioactivity of some other members of the Polyporaceae family has also been reported. This work reports the antiproliferative and antibacterial activity of crude extracts obtained from fruiting bodies of polypore fungi collected from the central region of Veracruz, Mexico, aimed at understanding the diversity of polypore species with potential pharmacological applications. 29 collections were identified macro- and microscopically in 19 species of polyporoid fungi, belonging to 13 genera. The antiproliferative activity screening of extracts against solid tumor cell lines (A549, SW1573, HeLa, HBL-100, T-47D, WiDr) allow us to identify four extracts with strong bioactivity [half-maximal growth inhibition (GI50) ≤ 50 µg/mL]. After this, a phylogenetic analysis of DNA sequences from the ITS region obtained from bioactive specimens allowed us to identify three extracts as Pycnoporus sanguineus (GI50 = ≤ 10 µg/mL) and the fourth bioactive extract as Ganoderma oerstedii (GI50 = < 50 µg/mL. Likewise, extracts from P. sanguineus showed mild or moderate antibacterial activity against Escherichia coli, Staphylococcus aureus and Xanthomonas albilineas. Bioprospecting studies of polyporoid fungi add to the knowledge of the diversity of macrofungi in Mexico and allow us to select one of the bioactive P. sanguineus to continue the pursuit of bioactive compounds through mycochemical studies.


Subject(s)
Anti-Bacterial Agents , Phylogeny , Mexico , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyporaceae/chemistry , Polyporaceae/classification , Fruiting Bodies, Fungal/chemistry , Microbial Sensitivity Tests
11.
Int J Med Mushrooms ; 26(5): 25-41, 2024.
Article in English | MEDLINE | ID: mdl-38780421

ABSTRACT

Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.


Subject(s)
Fermentation , Reishi , Triterpenes , Triterpenes/metabolism , Reishi/metabolism , Reishi/genetics , Reishi/chemistry , Genetic Engineering , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/chemistry , Mutagenesis , Mycelium/metabolism
12.
J Asian Nat Prod Res ; 26(8): 1001-1008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38607260

ABSTRACT

Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.


Subject(s)
Ganoderma , Nitric Oxide , Ganoderma/chemistry , Mice , RAW 264.7 Cells , Animals , Molecular Structure , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Macrophages/drug effects , Fruiting Bodies, Fungal/chemistry
13.
Carbohydr Res ; 538: 109099, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574411

ABSTRACT

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Subject(s)
Ascomycota , Reishi , beta-Glucans , Glucans/chemistry , Reishi/chemistry , Polysaccharides/chemistry , beta-Glucans/chemistry , Fruiting Bodies, Fungal/chemistry , Water/analysis
14.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675614

ABSTRACT

Two different collections of the gilled wild fungus Tricholoma terreum, collected in Italy, were subjected to phytochemical analysis. The fungal material was confidently identified by analysis of the ITS genomic sequences. Using both HR-LC-MS and NMR techniques, no evidence was found for the presence in the fruiting bodies of terreolides, terreumols or saponaceolides H-S, in striking contrast with the isolation of these terpenoids by Chinese authors from a mushroom collected in France and identified as T. terreum. The main cytotoxic terpenoid identified and isolated from the extracts of the specimens investigated in this work was the C30 derivative saponaceolide B, which had been previously isolated from T. saponaceum and other T. terreum collections. Although saponaceolide B is a rather labile molecule, easily degradable by heat or in acidic conditions, our study indicated that none of the extraction protocols used produced saponaceolide H-S or terreolide/terreumol derivatives, thus excluding the possibility that the latter compounds could be extraction artifacts. Considered together, these findings point to the need for the unambiguous identification of mushroom species belonging to the complex genus Tricholoma, characterized by high variability in the composition of metabolites. Moreover, based on our data, T. terreum must be considered an edible mushroom.


Subject(s)
Fruiting Bodies, Fungal , Tricholoma , Fruiting Bodies, Fungal/chemistry , Tricholoma/chemistry , Agaricales/chemistry , Magnetic Resonance Spectroscopy , Terpenes/chemistry , Terpenes/isolation & purification , Humans
15.
Int J Biol Macromol ; 269(Pt 1): 131799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677677

ABSTRACT

Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of ß particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 â†’ 4)-Glcp and α-D-(1 â†’ 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.


Subject(s)
Agrocybe , Glucans , Water , Glucans/chemistry , Water/chemistry , Agrocybe/chemistry , Molecular Weight , Glycogen/metabolism , Glycogen/chemistry , Fruiting Bodies, Fungal/chemistry , Rheology
16.
Food Chem ; 451: 139431, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663248

ABSTRACT

The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.


Subject(s)
Lipidomics , Lipids , Lipids/analysis , Lipids/chemistry , Chromatography, High Pressure Liquid , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Mass Spectrometry , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis , Agaricales/growth & development , Agaricales/chemistry , Agaricales/metabolism , Lipid Metabolism , Ascomycota/growth & development , Ascomycota/chemistry , Ascomycota/metabolism
17.
Mycologia ; 116(3): 464-474, 2024.
Article in English | MEDLINE | ID: mdl-38489159

ABSTRACT

Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.


Subject(s)
Antioxidants , Ergocalciferols , Polyphenols , Ergocalciferols/metabolism , Ergocalciferols/analysis , Polyphenols/metabolism , Polyphenols/analysis , Antioxidants/metabolism , Antioxidants/analysis , Chromatography, Liquid , Basidiomycota/metabolism , Basidiomycota/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Agaricales/chemistry , Agaricales/metabolism , Mass Spectrometry , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
18.
J Nat Med ; 78(3): 547-557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509426

ABSTRACT

Photochemical reactions are powerful tools for synthesizing organic molecules. The input of energy provided by light offers a means to produce strained and unique molecules that cannot be assembled using thermal protocols, allowing for the production of immense molecular complexity in a single chemical step. Furthermore, unlike thermal reactions, photochemical reactions do not require active reagents such as acids, bases, metals, or enzymes. Photochemical reactions play a central role in green chemistry. This article reports the isolation and structure determination of four new compounds (1-4) from the photoreaction products of the Polyozellus multiplex MeOH ext. The structures of the new compounds were elucidated using MS, IR, comprehensive NMR measurements and microED. The four compounds were formed by deacetylation of polyozellin, the main secondary metabolite of P. multiplex, and addition of singlet oxygen generated by sunlight. To develop drugs for treating Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the compounds (1-4) obtained by photoreaction were evaluated for BACE1 inhibitory activity. The hydrolysates (5 and 6) of polyozellin, the main secondary metabolites of P. multiplex, were also evaluated. The photoreaction products (3 and 4) and hydrolysates (5 and 6) of polyozellin showed BACE1 inhibitory activity (IC50: 2.2, 16.4, 23.3, and 5.3 µM, respectively).


Subject(s)
Fruiting Bodies, Fungal , Fruiting Bodies, Fungal/chemistry , Molecular Structure , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Photochemical Processes
19.
Arch Pharm Res ; 47(3): 272-287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416389

ABSTRACT

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.


Subject(s)
Agaricales , Poisons , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Poisons/analysis , Molecular Structure , HeLa Cells , Agaricales/chemistry , Fruiting Bodies, Fungal/chemistry
20.
J Ethnopharmacol ; 321: 117546, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061441

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY: This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS: Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS: The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION: This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.


Subject(s)
Agaricales , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Sulfates/analysis , Cell Cycle Checkpoints , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Apoptosis , Triple Negative Breast Neoplasms/drug therapy , Fruiting Bodies, Fungal/chemistry , Cell Movement , Monosaccharides/analysis , Cell Line, Tumor , Cell Cycle
SELECTION OF CITATIONS
SEARCH DETAIL
...