Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Molecules ; 29(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39064986

ABSTRACT

Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.


Subject(s)
Cordyceps , MAP Kinase Signaling System , Macrophages , Phagocytosis , Animals , Mice , Cordyceps/chemistry , RAW 264.7 Cells , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/metabolism , Phagocytosis/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Nitric Oxide/metabolism , Mitogen-Activated Protein Kinases/metabolism
2.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998999

ABSTRACT

Phellinus is a precious perennial medicinal fungus. Its polysaccharides are important bioactive components, and their chemical composition is complex. The polysaccharides are mainly extracted from the fruiting body and mycelium. The yield of the polysaccharides is dependent on the extraction method. They have many pharmacological activities, such as antitumor, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory, etc. They are also reported to show minor toxic and side effects. Many studies have reported the anticancer activity of Phellinus polysaccharides. This review paper provides a comprehensive examination of the current methodologies for the extraction and purification of Phellinus polysaccharides. Additionally, it delves into the structural characteristics, pharmacological activities, and mechanisms of action of these polysaccharides. The primary aim of this review is to offer a valuable resource for researchers, facilitating further studies on Phellinus polysaccharides and their potential applications.


Subject(s)
Fungal Polysaccharides , Humans , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Animals , Phellinus/chemistry
3.
Int J Biol Macromol ; 271(Pt 1): 132110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816295

ABSTRACT

In recent years, the considerable potential of endophytic bacteria and fungi as prolific producers of exopolysaccharides (EPSs) have attracted interest. In this study, 56 endophytes were isolated from Cyclocarya paliurus, and the secondary metabolites of EPSs were extracted from Monascus purpureus, Penicillium citrinum and Aspergillus versicolor, screened, and named MPE, PCE and AVE, respectively. In this work, the physicochemical properties and antioxidant activities of three EPSs, their cell proliferation activity on IEC-6 and RAW264.7 were investigated. The three EPSs were mainly composed of neutral sugar and differ in microstructure. However, MPE had a loose structure, and PCE exhibited a dense and sheet-like structure. In addition, the three EPSs performed ordinary antioxidant activity in vitro but showed excellent cell proliferation activity on IEC-6 and RAW264.7. The cell proliferation activity of PCE was 1.4-fold that of the controls at a concentration of 800 µg/mL on IEC-6, and MPE exhibited 1.3-fold increase on RAW264.7. This study provided scientific evidence and insights into the application of endophytes as a novel plant resource possessing huge application potential.


Subject(s)
Antioxidants , Cell Proliferation , Endophytes , Juglandaceae , Penicillium , Mice , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , RAW 264.7 Cells , Endophytes/chemistry , Endophytes/metabolism , Cell Proliferation/drug effects , Juglandaceae/chemistry , Penicillium/chemistry , Penicillium/metabolism , Aspergillus/chemistry , Aspergillus/metabolism , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Monascus/chemistry , Monascus/metabolism , Rats
4.
Int J Biol Macromol ; 272(Pt 1): 132543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788870

ABSTRACT

Some macrofungi have a long history of being used as traditional or folk medicines, making significant contributions to human health. To discover bioactive molecules with potential anticancer properties, a homogeneous heteropolysaccharide (FOBP90-1) was purified from the medicinal macrofungus Fomitopsis officinalis. FOBP90-1 was found to have a molecular weight of 2.87 × 104 g/mol and mainly consist of →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, →6)-ß-d-Glcp-(1→, α-d-Manp-(1→, and 3-O-Me-α-l-Fucp-(1→ according to UV, FT-IR, methylation analysis, and NMR data. In addition to its structural properties, FOBP90-1 displayed anticancer activity in zebrafish models. The following mechanistic analysis discovered that the in vivo antitumor effect was linked to immune activation and angiogenesis inhibition. These effects were mediated by the interactions of FOBP90-1 with TLR-2, TLR-4, PD-L1, and VEGFR-2, as determined through a series of experiments involving cells, transgenic zebrafish, molecular docking simulations, and surface plasmon resonance (SPR). All the experimental findings have demonstrated that FOBP90-1, a purified fungal polysaccharide, is expected to be utilized as a cancer treatment agent.


Subject(s)
Antineoplastic Agents , Coriolaceae , Fungal Polysaccharides , Zebrafish , Animals , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Humans , Coriolaceae/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Molecular Docking Simulation
5.
Int J Biol Macromol ; 270(Pt 2): 132222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729468

ABSTRACT

Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 µg/mL) promoted NO production up to 30.66 µmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 µg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.


Subject(s)
Fungal Polysaccharides , Mice , Animals , RAW 264.7 Cells , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Nitric Oxide/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Phagocytosis/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Superoxide Dismutase/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Acid Phosphatase/metabolism
6.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
7.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Article in English | MEDLINE | ID: mdl-38569989

ABSTRACT

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Fungal Polysaccharides , Zebrafish , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/isolation & purification , Humans , Coriolaceae/chemistry , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Mice , Angiogenesis
8.
Int J Biol Macromol ; 268(Pt 2): 131891, 2024 May.
Article in English | MEDLINE | ID: mdl-38677687

ABSTRACT

In this study, one water soluble polysaccharide (IOP1-1) with a weight average molecular weight of 6886 Da was obtained from the black crystal region of Inonotus obliquus by hot water extraction, DEAE-52 cellulose extraction and Sephadex-100 column chromatography purification. Structural analysis indicated that IOP1-1 was a glucan with a main chain composed of α-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 6)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 3)-ß-Glcp-(1→. The CCK-8 assay results showed that IOP1-1 inhibited AsPC-1 and SW1990 pancreatic cancer cell proliferation in a concentration-dependent manner. Flow cytometric analysis revealed that IOP1-1 induced cell cycle arrest in AsPC-1 and SW1990 cells. Hoechst 33342 staining and Annexin V-FITC/PI double staining analysis showed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 cells. Furthermore, western blot analysis confirmed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 pancreatic cancer cells through three pathways: the mitochondrial pathway, the death receptor pathway, and endoplasmic reticulum stress. According to these research data, IOP1-1 may be utilized as an adjuvant treatment to anticancer medications, opening up new application prospects and opportunities.


Subject(s)
Apoptosis , Cell Proliferation , Inonotus , Pancreatic Neoplasms , Humans , Apoptosis/drug effects , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Proliferation/drug effects , Inonotus/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
9.
Prep Biochem Biotechnol ; 54(7): 859-871, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38149618

ABSTRACT

Polysaccharides derived from Auricularia auricula exhibit diverse biological activities and hold significant potential for commercial utilization as functional food ingredients. In this investigation, polysaccharides from A. auricula were obtained using six extraction techniques (ammonium oxalate solution extraction, sodium hydroxide solution extraction, hot water extraction, pectinase and cellulase-assisted extraction, ultrasonic-assisted extraction, and microwave-assisted extraction). Subsequently, a comprehensive comparison was conducted to evaluate their physicochemical properties and biological functionalities. The ammonium oxalate solution extraction method yielded a higher extraction rate (11.76%) and polysaccharide content (84.12%), as well as a higher uronic acid content (10.13%). Although the six Auricularia polysaccharides had different molecular weight distributions, monosaccharide molar ratios, similar monosaccharide compositions, and characteristic functional groups of polysaccharides, they exhibited different surface morphology. In vitro assays showed that polysaccharides extracted by ammonium oxalate solution possessed good scavenging ability against DPPH free radical, hydroxyl free radical and superoxide anion free radical as well as reduction power of iron ion. At the same time, both polysaccharides extracted by ammonium oxalate solution and sodium hydroxide solution promoted NO production in mouse macrophages along with the secretion of cytokines TNF-α, IL-1ß, and IL-6. These results indicated significant differences in the structure and characteristics among Auricularia polysaccharides prepared by various extraction methods, which may be related to the variety or origin of A. auricula; furthermore, their bioactivities varied accordingly in vitro assays where the ammonium oxalate solution extraction method was found more beneficial for obtaining high-quality bioactive Auricularia polysaccharides.


Subject(s)
Auricularia , Mice , Animals , Auricularia/chemistry , RAW 264.7 Cells , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/chemistry , Molecular Weight , Nitric Oxide , Chemical Fractionation/methods , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Macrophages/drug effects , Macrophages/metabolism
10.
Curr Protoc ; 3(8): e853, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37555775

ABSTRACT

The fungal cell wall and secreted exopolysaccharides play an important role in the interactions between fungi and their environment. Despite their central role in fungal biology, ecology, and host-pathogen interactions, the composition of these polymers and their synthetic pathways are not well understood. The protocols presented in this article describe an approach to isolate fungal cell wall polysaccharides and to identify and quantify the monosaccharide composition of these polymers by gas chromatography-mass spectrometry (GC-MS). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: O-methyl trimethylsilyl monosaccharide derivatives composition analysis by GC-MS Support Protocol: Fungal cell wall extraction.


Subject(s)
Cell Wall , Fungal Polysaccharides , Gas Chromatography-Mass Spectrometry , Monosaccharides , Biopolymers/analysis , Biopolymers/isolation & purification , Cell Wall/chemistry , Fungal Polysaccharides/analysis , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Monosaccharides/analysis , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Reference Standards , Calibration
11.
Carbohydr Polym ; 278: 118960, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973775

ABSTRACT

In our continuous exploration for bioactive polysaccharides, a novel polysaccharide FMP-2 was isolated and purified from the fruiting bodies of Morchella esculenta by alkali-assisted extraction. FMP-2 had an average molecular weight of 1.09 × 106 Da and contained mannose, glucuronic acid, glucose, galactose, and arabinose in a molar ratio of 4.10:0.22:1.00:5.75:0.44. The backbone of FMP-2 mainly consisted of 1,2-α-D-Galp, 1,6-α-D-Galp, and 1,4-α-D-Manp, with branches of 1,4,6-α-D-Manp and 1,2,6-α-D-Galp. FMP-2 can stimulate phagocytosis and promote the secretion of NO, ROS, and cytokines like IL-6, IL-1ß, and TNF-α in RAW264.7 cells ranging from 25 to 400 µg/mL. FMP-2 had great repairing effect on the immune injury of zebrafish induced by chloramphenicol. The phagocytosis ability of zebrafish macrophages and the proliferation of neutrophils can be greatly enhanced by polysaccharide FMP-2 with concentrations from 50 to 200 µg/mL. These findings suggest that FMP-2 might be used as a potential immunomodulator in the food and pharmaceutical industries.


Subject(s)
Alkalies/chemistry , Ascomycota/chemistry , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/pharmacology , Galactose/analogs & derivatives , Immunologic Factors/pharmacology , Mannans/pharmacology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Galactose/chemistry , Galactose/isolation & purification , Galactose/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mannans/chemistry , Mannans/isolation & purification , Mice , Neutrophils/drug effects , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Zebrafish
12.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884845

ABSTRACT

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.


Subject(s)
Culture Media/chemistry , Fungal Polysaccharides/analysis , Selenium/chemistry , Shiitake Mushrooms/metabolism , Amino Acids/analysis , Carbohydrate Sequence , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Fungal Polysaccharides/isolation & purification , Fungal Polysaccharides/pharmacology , Humans , Molecular Weight , Oxidative Stress/drug effects , Shiitake Mushrooms/growth & development , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
13.
Food Funct ; 12(19): 9327-9338, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606556

ABSTRACT

The extracellular polysaccharide of Morchella esculenta cultivated under submerged fermentation was extracted. A single polysaccharide was purified through DEAE-Cellulose 52 and Sephadex G 100, and named as MEP 2a. The molecular weight of MEP 2a was determined by HPGPC and it is about 1391.5 kDa. MEP 2a is composed of mannose and glucose as the monosaccharide unit with a molar ratio of 8.15 : 1.07. The main polysaccharide chemical structure was analyzed by 1D and 2D NMR. Methylation and NMR analysis revealed that the backbone of MEP 2a consists of 1,3,4-linked-Manp, 1,2-linked-Manp and 1,6-linked-Glcp. 1D and 2D NMR results indicated that the main chain is based on →1)-ß-D-Glcp-(6→, →1)-α-D-Manp-(3,4→, →1)-α-D-Manp-(2→) and the branch chain is composed of α-D-Manp-(1→, →1)-ß-D-Glcp-(6→ and α-D-Glcp-(1→). MEP 2a promoted the phagocytosis function and secretion of NO, IL-1ß, IL-6 and TNF-α of macrophages. In the present study, the chemical structure and immunomodulatory ability of an extracellular polysaccharide of Morchella esculenta was investigated which guarantees further research studies and promising applications.


Subject(s)
Ascomycota/metabolism , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Immunomodulation , Animals , Ascomycota/chemistry , Carbohydrate Conformation , Cytokines/metabolism , Fermentation , Fungal Polysaccharides/biosynthesis , Fungal Polysaccharides/isolation & purification , Glucose/analysis , MAP Kinase Signaling System , Macrophages/immunology , Macrophages/metabolism , Mannose/analysis , Methylation , Mice , Molecular Weight , Nitric Oxide/metabolism , Phagocytosis , RAW 264.7 Cells
14.
Int J Biol Macromol ; 192: 967-977, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34655586

ABSTRACT

Lactarius volemus Fr. is an edible mushroom widely consumed in China. Polysaccharide is an important nutritional component of L. volemus. This research aimed to isolate the polysaccharide from L. volemus and study its structure and bioactivities. A purified polysaccharide was identified and named as LVF-I whose primary structure was proposed considering the comprehensive results of monosaccharide composition, periodate oxidation-smith degradation, methylation analysis, FT-IR and 1D/2D NMR spectroscopy. Then the immunomodulation of LVF-I and its inhibition effect on H1299 and MCF-7 cells were investigated. Results showed that LVF-I (12,894 Da) contained fucose, mannose, glucose and galactose. It had a backbone consisting of →4)-α-D-Glcp-(1→, →6)-ß-D-Manp-(1→, →6)-α-D-Galp-(1 â†’ and →4)-ß-D-Manp-(1→. And its side chains were branched at C2 of →4)-ß-D-Manp-(1 â†’ by →6)-α-D-Galp-(1→, α-D-Glcp-(1→, α-D-Galp-(1 â†’ and α-L-Fucp-(1→. LVF-I (250-1000 µg/mL) could inhibit the proliferation of H1299 and MCF-7 cells, while enhance the proliferative response of splenocyte and the phagocytic ability of RAW264.7. Furthermore, LVF-I (250-1000 µg/mL) significantly induced the secretion of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) by up-regulating their mRNA expression in macrophages. These results suggested that LVF-I had the potential to be developed as antitumor or immunomodulatory agents by inhibiting the proliferation of tumor cells and stimulating macrophages-mediated immune responses.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Basidiomycota/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Animals , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Chemical Phenomena , Cytotoxicity Tests, Immunologic , Fungal Polysaccharides/isolation & purification , Gas Chromatography-Mass Spectrometry , Humans , Immunomodulating Agents/isolation & purification , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Molecular Weight , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
15.
Carbohydr Polym ; 271: 118415, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364556

ABSTRACT

The Saccharomyces cerevisiae CNCM I-3856 was previously reported to strongly inhibit adherent-invasive Escherichia coli (AIEC) adhesion to intestinal epithelial cells in vitro and to favor AIEC elimination from the gut in a murine model of Crohn's disease in vivo. In order to identify which cell wall components of yeast are responsible for AIEC elimination, constituent polysaccharides of yeast were isolated and their anti-adhesive ability against AIEC adhesion in vitro was screened. A fraction containing mannan, ß-glucan and α-glucan extracted from yeast cell-walls was shown to inhibit 95% of AIEC adhesion in vitro and was thus identified as the strongest anti-adhesive yeast cell wall component. Furthermore, this mannan-glucan-containing fraction was shown to accelerate AIEC decolonization from gut in vivo. This fraction could be proposed as a treatment to eliminate AIEC bacteria in patients with Crohn's disease, a microbial trigger of intestinal inflammation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Adhesion/drug effects , Crohn Disease/drug therapy , Escherichia coli/drug effects , Fungal Polysaccharides/therapeutic use , Saccharomyces cerevisiae/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Cell Wall/chemistry , Feces/microbiology , Female , Fungal Polysaccharides/isolation & purification , Gastrointestinal Microbiome/drug effects , Glucans/isolation & purification , Glucans/therapeutic use , Male , Mannans/isolation & purification , Mannans/therapeutic use , Mice, Transgenic , Phosphopeptides/isolation & purification , Phosphopeptides/therapeutic use
16.
Carbohydr Polym ; 269: 118329, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294340

ABSTRACT

In this paper, cascade membrane technology was utilized to classify polysaccharides from Ganoderma lucidum (GLPs). The properties and antifatigue activity of graded polysaccharides were identified and compared. GLPs were separated using cascade ultrafiltration membranes of 100 kDa, 10 kDa and 1 kDa in sequence. The molecular weights of polysaccharides in these GLP fractions were approximately 322.0 kDa, 18.8 kDa and 6.4 kDa, and all polysaccharides were in active ß-configurations. This showed that all graded GLPs could elongate swimming time, improve endurance and promote fatigue recovery, especially polysaccharides with molecular weights above 10 kDa. This demonstrated that GLPs could decrease the activities of SUN and CK and the levels of MDA and BLA. They also increased the level of Gly, accelerated fat transformation, and improved the activities of GPx, SOD and LDH in all treated mice. Accordingly, GLPs above 10 kDa might be potential agents with antifatigue activity.


Subject(s)
Central Nervous System Stimulants/pharmacology , Fatigue/prevention & control , Fungal Polysaccharides/pharmacology , Reishi/chemistry , Animals , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/isolation & purification , Filtration/methods , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Male , Mice, Inbred BALB C , Molecular Weight , Swimming
17.
Int J Biol Macromol ; 186: 919-932, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34280450

ABSTRACT

Production of polysaccharides by white-rot-fungi in submerged cultivation has several advantages due to process control. This work deals with the submerged cultivation, extraction and antitumor activity of polysaccharides from a wild strain of Schizophyllum radiatum isolated from a tropical forest of Colombia. The mushroom was cultivated in laboratory conditions, and classified by classical and molecular taxonomy. Submerged cultivation was performed in a bioreactor of 5 L using a ligninolytic residue as substrate. The fermentation conditions were 30 ± 1 °C, pH 4.5, 300 rpm and 1.5 vvm of air for 4 days. The yields were 16.8 g/L (w/v) of biomass, and after extraction, 0.6 g/L of water-soluble exopolysaccharide (SEPS) and 2.01 % (w/w) of water-soluble intrapolysaccharide (SIPS) were obtained. In each extract total carbohydrate, glucans and protein contents were determined. Also, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), high performance liquid chromatography with refraction index detection (HPLC-RI), high performance gel permeation chromatography (HPGPC) and Nuclear Magnetic Resonance (NMR) analysis were performed. Results indicated that SEPS and SIPS are heteropolysaccharides with amorphous structure and high molecular weights. Antitumor and immunostimulant activity was evaluated in different cancer cell lines. The results suggest these polysaccharides have direct and indirect antitumor activity activating immune cells such as macrophages. These findings enhance our knowledge about new sources of fungal metabolites that serve as adjuvant, cheaper and less harmful alternatives to cancer treatment.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antineoplastic Agents/pharmacology , Fungal Polysaccharides/pharmacology , Macrophages/drug effects , Neoplasms/drug therapy , Schizophyllum/metabolism , Adjuvants, Immunologic/isolation & purification , Animals , Antineoplastic Agents/isolation & purification , Bioreactors , Cell Proliferation/drug effects , Cell Survival , Fermentation , Fungal Polysaccharides/isolation & purification , Humans , Industrial Microbiology , Macrophage Activation/drug effects , Macrophages/immunology , Mice , Neoplasms/pathology , Phylogeny , RAW 264.7 Cells , Schizophyllum/genetics , Schizophyllum/growth & development , Solubility , U937 Cells
18.
Int J Biol Macromol ; 187: 651-663, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34303740

ABSTRACT

An efficient extraction method of Auricularia auricula polysaccharides (AAPs) by neutral protease was developed and optimized by response surface methodology. AAPs were graded by stepwise ethanol precipitation, the fraction with high recovery rate and strong radical scavenging rate were obtained, then its antioxidant and lipid lowering effect were studied using Caenorhabditis elegans as model organism. The extract yield and ABTS+ scavenging rates of AAPs could reach 14.90% and 86.0% at 50 °C, 75 mL/g of liquid-to-material ratio and pH 9.0. AAP3 obtained by 15% ethanol was a heteropolysaccharide comprised of mannose, glucose, glucuronic acid, xylose, galactose and glucosamine. AAP3 could significantly prolong the lifespan of C. elegans and enhance the activity of antioxidant enzymes including superoxide dismutase (SOD), catalases (CAT) at 0.25 mg/mL (p < 0.05). The qRT-PCR results showed that AAP3 could up regulate mRNA expression levels of daf-16 and skn-1 (>1.6 fold) at 0.25 mg/mL. Besides, AAP3 could significantly reduce the level of body fat and triglyceride in C. elegans (p < 0.05). These studies demonstrated that A. auricula polysaccharides prepared by neutral protease had a prominent protective effect to the damage induced by the intracellular free radical generating agents.


Subject(s)
Antioxidants/pharmacology , Auricularia/enzymology , Caenorhabditis elegans/drug effects , Fungal Polysaccharides/pharmacology , Hypolipidemic Agents/pharmacology , Metalloendopeptidases/metabolism , Adiposity/drug effects , Animals , Antioxidants/isolation & purification , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chemical Fractionation , Down-Regulation , Fungal Polysaccharides/isolation & purification , Hypolipidemic Agents/isolation & purification , Picrates/chemistry , Sulfonic Acids/chemistry , Triglycerides/metabolism
19.
Carbohydr Polym ; 268: 118214, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34127216

ABSTRACT

Phellinus baumii is used to treat inflammatory bowel disease (IBD) and gastroenteritis. In this study, a 46 kDa heteropolysaccharide SHPS-1 was isolated from fruiting bodies of P. baumii. SHPS-1 consisted of arabinose, mannose, glucose, and galactose at a molar ratio of 2.2:15.7:49.3:32.8. SHPS-1 had a backbone containing 1,3-linked ß-D-Glcp and 1,6-linked α-D-Galp residues, and Araf, Manp and Galp units were attached as oligosaccharidic side chains to the backbone at C-6 of some glucopyranoses. SHPS-1 decreased phosphorylation level of STAT-1 and expression levels of STAT-1 targeted genes such as iNOS and TNF-α in lipopolysaccharide-stimulated macrophage RAW 264.7 cells. Furthermore, SHPS-1 promoted the expression of IL-10 and macrophage mannose receptor CD 206, markers of tissue repairing macrophages. SHPS-1 alleviated ulcerative colitis in mice by decreasing pro-inflammatory genes and increasing anti-inflammatory and tissue repairing genes. Collectively, SHPS-1 polysaccharide from P. baumii had anti-inflammatory activity and can potentially treat IBD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Basidiomycota/chemistry , Colitis, Ulcerative/drug therapy , Fungal Polysaccharides/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Carbohydrate Sequence , Colitis, Ulcerative/chemically induced , Cytokines/metabolism , Dextran Sulfate , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , RAW 264.7 Cells , STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects
20.
Carbohydr Polym ; 268: 118239, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34127221

ABSTRACT

Composite dressing composed of Rhizochitosan and Regenplex™ to promote wound healing were assessed. Rhizochitosan was fabricated by deacetylation of Rhizochitin, which obtained by simply depigmenting sporangium-free mycelial mattress produced from Rhizopus stolonifer F6. Physicochemical characterizations of Rhizochitosan demonstrated that it contained 13.5% chitosan with a water-absorption ability of 35-fold dry weight and exhibiting hydrogel nature after hydration. In a wound-healing study on SD rats with full-thickness injury, the composite dressing had a better healing effect than those for each individual components and control group and wound even healed as functional tissue instead of scar tissue. The underlying mechanism of the composite beneficial to wound remodeling is likely attributable to a more reduction level of matrix metalloproteinase (MMP)-9 expression in early stage and a higher MMP-2 expression level in a later stage of healing process. Conclusively, the composite dressing demonstrated to be highly beneficial to the healing of full-thickness injury wound.


Subject(s)
Blood Platelets/drug effects , Chitosan/therapeutic use , Fungal Polysaccharides/therapeutic use , Wound Healing/drug effects , Animals , Bandages , Cattle , Chitosan/chemistry , Chitosan/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Male , Rats, Sprague-Dawley , Rhizopus/chemistry , Skin/drug effects , Skin/injuries
SELECTION OF CITATIONS
SEARCH DETAIL