Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.742
1.
Microb Cell Fact ; 23(1): 161, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822407

Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 µg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.


Antifungal Agents , Endophytes , Antifungal Agents/pharmacology , Endophytes/metabolism , Humans , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/metabolism , Fungi/drug effects , Fungi/metabolism , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Candida albicans/drug effects
2.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844852

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Bacteria , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Microbial Sensitivity Tests/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/drug effects , Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Fungi/drug effects , Fungi/isolation & purification , Blood Culture/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Time Factors , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Sepsis/microbiology , Sepsis/drug therapy , Sepsis/diagnosis
3.
Sci Rep ; 14(1): 10544, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719860

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Acetolactate Synthase , Acetyl-CoA Carboxylase , Echinochloa , Herbicide Resistance , Herbicides , Soil Microbiology , Italy/epidemiology , Herbicides/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Echinochloa/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Plant Weeds/drug effects , Microbiota/drug effects , Biodiversity , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Soil/chemistry , Fungi/drug effects , Fungi/isolation & purification , Fungi/genetics
4.
PLoS Pathog ; 20(5): e1012143, 2024 May.
Article En | MEDLINE | ID: mdl-38696356

With the escalating global antimicrobial resistance crisis, there is an urgent need for innovative strategies against drug-resistant microbes. Accumulating evidence indicates microbial extracellular vesicles (EVs) contribute to antimicrobial resistance. Therefore, comprehensively elucidating the roles and mechanisms of microbial EVs in conferring resistance could provide new perspectives and avenues for novel antimicrobial approaches. In this review, we systematically examine current research on antimicrobial resistance involving bacterial, fungal, and parasitic EVs, delineating the mechanisms whereby microbial EVs promote resistance. Finally, we discuss the application of bacterial EVs in antimicrobial therapy.


Bacteria , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Bacteria/drug effects , Fungi/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Drug Resistance, Bacterial , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
5.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article En | MEDLINE | ID: mdl-38716194

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
6.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747929

BACKGROUND: Female vulvovaginitis was one of the most common gynecological diseases. It had a great negative impact on their work and quality of life. This retrospective study evaluated the clinical and laboratory data of patients with vulvovaginitis in Hangzhou, China. To analyze the clinical situation, species distribution and antibiotic resistance of pathogenic fungi and bacteria in 626 cases of vulvovaginitis in Hangzhou. Microorganism culture, identification, and antibiotic susceptibility testing were conducted. The study aimed to provide a theoretical value for an effective treatment of vulvovaginitis. METHODS: In total, 626 outpatients and inpatients diagnosed with vulvovaginitis were selected from January 2018 to January 2023. Data of all the patients were collected from the hospital's electronic medical records. Vaginal secretion was collected for testing and SPSS 25.0 software was used to perform statistical analysis. RESULTS: A total of 626 strains of fungi, Gram-positive, and -negative bacteria were detected. Clinical situations of patients infected with the top five pathogenic fungi and bacteria were analyzed. Pathogenic fungi and bacteria were slightly different in each age group and in each onset time group. The results of antibiotic susceptibility testing showed that the resistance rates of itraconazole and fluconazole were high and Gram- negative and -positive bacteria were multidrug resistant. Gram-negative bacteria were more sensitive to carbenicillins and compound antibiotics, while Gram-positive bacteria were sensitive to rifampicin and daptomycin. MRSA and non vancomycin-resistant strains were detected. CONCLUSIONS: Fungi and bacteria were usually detected as pathogenes in patients with vulvovaginitis in Hangzhou. Some factors, such as age and onset time, often affected the incidence. Pathogenic fungi and bacteria were resistant to some common antibiotics, and clinical treatments should be carried out in a timely and reasonable manner according to the results of antibiotic susceptibility testing.


Fungi , Microbial Sensitivity Tests , Vulvovaginitis , Humans , Female , China/epidemiology , Adult , Vulvovaginitis/microbiology , Vulvovaginitis/drug therapy , Vulvovaginitis/epidemiology , Vulvovaginitis/diagnosis , Retrospective Studies , Fungi/drug effects , Fungi/isolation & purification , Fungi/classification , Middle Aged , Young Adult , Adolescent , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Drug Resistance, Fungal , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Bacterial , Aged
7.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731579

Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.


Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Humans , Animals , Fungi/metabolism , Fungi/drug effects , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Stress, Physiological/drug effects
8.
Sci Rep ; 14(1): 11228, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755187

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Antifungal Agents , Endophytes , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Endophytes/metabolism , Endophytes/chemistry , Microbial Sensitivity Tests , Colletotrichum/drug effects , Fungi/drug effects , Alternaria/drug effects , Rhizoctonia/drug effects , Humans , Candida/drug effects
9.
Article En | MEDLINE | ID: mdl-38710584

The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY: This comprehensive review of AFPs will be helpful for further research in antifungal research.


Antifungal Agents , Biofilms , Fungi , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Biofilms/drug effects , Fungi/drug effects , Animals , Humans , Mycoses/drug therapy , Peptides/pharmacology , Peptides/chemistry , Drug Resistance, Fungal , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry
10.
Sci Total Environ ; 933: 173100, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38735330

Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 µm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bacteria, fungi, protists, and seed germination. MPs significantly promoted soil respiration, and the stimulating effects of PE were the strongest for medium and small-sized (0.5-1500 µm) particles, while those of PVC were the strongest for small particle sizes (0.5-50 µm). Large-sized (4500 µm) PE and all sizes of PVC significantly improved soil urease activity, while medium-sized (1500 µm) PVC significantly improved soil invertase activity. MPs altered the soil microbial community diversity, and the effects were especially pronounced for medium and small-sized (0.5-1500 µm) particles of PE and PVC on bacteria and fungi and small-sized (0.5 µm) particles of PE on protists. The impacts of MPs on bacteria and fungi were greater than on protists. The seed germination rate of Brassica chinensis decreased gradually with the decrease in PE MPs particle size. Therefore, to reduce the impact of MPs on soil ecosystems, effective measures should be taken to avoid the transformation of MPs into smaller particles in soil environmental management.


Germination , Microbiota , Microplastics , Particle Size , Soil Microbiology , Soil Pollutants , Microplastics/pharmacology , Soil Pollutants/pharmacology , Germination/drug effects , Soil/chemistry , Soil/parasitology , Bacteria/drug effects , Bacteria/enzymology , Fungi/drug effects , Fungi/enzymology , Eukaryota/drug effects , Eukaryota/enzymology , Enzyme Activation/drug effects , Microbiota/drug effects , Biodiversity , Brassica/drug effects , Brassica/growth & development
11.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695903

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
12.
Environ Toxicol Chem ; 43(6): 1300-1311, 2024 Jun.
Article En | MEDLINE | ID: mdl-38695738

Leaf decomposition is a key process in stream ecosystems within forested catchments; it is driven by microbial communities, particularly fungi and bacteria. These microorganisms make nutrients and energy bound in leaves available for wider parts of the food web. Leaf-associated microorganisms are subjected to anthropogenic pressures, such as the increased exposure to nutrients and fungicides associated with land-use change. We assessed the sensitivity of leaf-associated microbial communities with differing exposure histories, namely, from pristine (P) streams, and streams impacted by wastewater (W) and agricultural run-off (vineyards; V). In the laboratory, microbial communities were exposed to elevated nutrient (NO3-N: 0.2-18.0 mg/L, PO4-P: 0.02-1.8 mg/L) and fungicide concentrations (sum concentration 0-300 µg/L) in a fully crossed 3 × 4 × 4-factorial design over 21 days. Leaf decomposition and exoenzyme activity were measured as functional endpoints, and fungal community composition and microbial abundance served as structural variables. Overall, leaf decomposition did not differ between fungicide treatments or exposure histories. Nonetheless, substantial changes in the fungal community composition were observed after exposure to environmentally relevant fungicide concentrations. Elevated nutrient concentrations assisted leaf decomposition, and the effect size depended on the exposure history. The observed changes in the fungal community composition support the principle of functional redundancy, with highly efficient decomposers maintaining leaf decomposition. Environ Toxicol Chem 2024;43:1300-1311. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Fungi , Fungicides, Industrial , Plant Leaves , Water Pollutants, Chemical , Fungicides, Industrial/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Fungi/drug effects , Microbiota/drug effects , Water Microbiology , Nutrients/analysis , Bacteria/drug effects , Rivers/chemistry , Rivers/microbiology
13.
Nanotechnology ; 35(32)2024 May 24.
Article En | MEDLINE | ID: mdl-38701766

One of the global challenges for living things is to provide pollution and harmful microbes-free environment. In this study, magnetically retrievable spinel-structured manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) (MZF) was synthesized by a facile solvothermal method. Further, the MZF with different weight percentages (10 wt%, 50 wt%, and 80 wt%) were supported on reduced graphene oxide (rGO). The phase purity and morphology of MZF and MZF/rGO nanocomposite were confirmed by x-ray diffraction technique and scanning electron microscopy, respectively. The Fourier transform infrared spectroscopy, Raman, UV-visible spectroscopy, and thermogravimetric analyses of the as-synthesized nanocomposites were examined for the detection of various chemical groups, band gap, and thermal properties, respectively. The MZF/rGO nanocomposite exhibited significant antibacterial and antifungal activity againstEggerthella lenta, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa,andCandida albicanscompared to bare MZF and rGO. The high surface area of rGO plays a crucible role in antimicrobial analysis. Additionally, the antibacterial and antifungal activity is compared by synthesizing various metal ferrites such as MnFe2O4, ZnFe2O4, and Fe3O4. The 50 wt% MZF/rGO nanocomposite exhibits significantly high antibacterial activity. However, 10 wt% MZF/rGO nanocomposite shows good antifungal activity than Fe3O4, MnFe2O4, ZnFe2O4, MnZnFe2O4, 50 wt%, and 80 wt% MZF/rGO nanocomposites. These findings suggest that the prepared ferrite nanocomposites hold promise for microbial inhibition.


Bacteria , Ferric Compounds , Fungi , Graphite , Nanocomposites , Graphite/chemistry , Graphite/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Nanocomposites/chemistry , Fungi/drug effects , Bacteria/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Zinc/chemistry , Zinc/pharmacology , Aluminum Oxide , Magnesium Oxide
14.
J Chem Inf Model ; 64(10): 4277-4285, 2024 May 27.
Article En | MEDLINE | ID: mdl-38743449

Antifungal peptides (AFPs) are emerging as promising candidates for advanced antifungal therapies because of their broad-spectrum efficacy and reduced resistance development. In silico design of AFPs, however, remains challenging, due to the lack of an efficient and well-validated quantitative assessment of antifungal activity. This study introduced an AFP design approach that leverages an innovative quantitative metric, named the antifungal index (AFI), through a three-step process, i.e., segmentation, single-point mutation, and global multipoint optimization. An exhaustive search of 100 putative AFP sequences indicated that random modifications without guidance only have a 5.97-20.24% chance of enhancing antifungal activity. Analysis of the search results revealed that (1) N-terminus truncation is more effective in enhancing antifungal activity than the modifications at the C-terminus or both ends, (2) introducing the amino acids within the 10-60% sequence region that enhance aromaticity and hydrophobicity are more effective in increasing antifungal efficacy, and (3) incorporating alanine, cysteine, and phenylalanine during multiple point mutations has a synergistic effect on enhancing antifungal activity. Subsequently, 28 designed peptides were synthesized and tested against four typical fungal strains. The success rate for developing promising AFPs, with a minimal inhibitory concentration of ≤5.00 µM, was an impressive 82.14%. The predictive and design tool is accessible at https://antifungipept.chemoinfolab.com.


Antifungal Agents , Computer Simulation , Drug Design , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Amino Acid Sequence , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Fungi/drug effects
15.
J Hazard Mater ; 472: 134474, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38696961

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.


Bacteria , Body Size , Drug Resistance, Microbial , Fertilizers , Fungi , Nematoda , Soil Microbiology , Soil , Body Size/drug effects , Bacteria/genetics , Bacteria/drug effects , Animals , Soil/chemistry , Fungi/genetics , Fungi/drug effects , Nematoda/drug effects , Nematoda/genetics , Drug Resistance, Microbial/genetics
16.
Microb Pathog ; 191: 106672, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705219

Phytopathogenic fungi significantly threaten global food security, causing substantial yield and quality losses. Sustainable solutions are urgently needed to combat these agricultural pathogens. This study explored the potential of silver (Ag), copper (Cu), and combined Ag/Cu nanoparticles capped with aminolevulinic acid (ALA) as antifungal agents. The nanoparticles (ALAAg, ALACu, and ALAAgCu) were synthesized via photoreduction and characterized using various techniques (UV-Vis, TEM, XRD, Zeta potential). Their antifungal activity against four key plant pathogens (Alternaria grandis, Colletotrichum truncatum, Corynespora cassiicola, and Fusarium oxysporum) was evaluated using poisoned food techniques. Notably, ALAAgCuNPs demonstrated superior antifungal activity compared to a conventional fungicide against two fungal strains. Even at lower concentrations, ALAAgCuNPs exhibited fungistatic effects comparable to those of the control. These promising results suggest the potential of ALAAgCu NPs as a broad-spectrum, potentially eco-friendly alternative for fungal control in plants and seeds. This approach is crucial for ensuring crop health, harvest quality, and food safety.


Aminolevulinic Acid , Antifungal Agents , Copper , Fungi , Metal Nanoparticles , Plant Diseases , Silver , Copper/pharmacology , Copper/chemistry , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology , Antifungal Agents/pharmacology , Fungi/drug effects , Aminolevulinic Acid/pharmacology , Microbial Sensitivity Tests , Fusarium/drug effects
17.
Braz J Microbiol ; 55(2): 1829-1839, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722522

This study aimed to evaluate the antifungal effect of SC319 sorghum phenolic extract (SPE) on the Aspergillus, Fusarium, Penicillium, Stenocarpella, Colletotrichum, and Macrophomina genera. SPE was extracted by 20% ethanol and used in four assays: (1) against Fusarium verticillioides in solid (PDA) and liquid (PD) potato dextrose media; (2) Minimum Inhibitory Concentration (MIC) assay with 16 fungi isolates; (3) Conidial Germination Rate (CGR) with 14 fungi isolates and (4) Growth Curve (GC) with 11 fungi isolates. There was no reduction in the mycelial growth (colony diameter and dry weight) and in the number of Fusarium verticillioides spores in assay 1 (PDA and PD). The colony's dry weight was almost six times higher in the presence than in the absence of SPE. All SPE samples presented MIC (assay 1) above the maximum concentration tested (5000 µg.mL-1) for the 16 isolates. Also, there was no inhibitory effect of SPE on conidia germination rate (CGR). Oppositely, in GC assay, the control had a higher CFU count than the samples with SPE in 24 h. This result suggests that SPE can delay the fungal growth in the first hours of incubation, which is an important finding that may help reduce the severity of fungal diseases in plants. However, further studies are needed to confirm these results, including sorghum genotypes with different profiles of phenolic compounds. Although the SC319 SPE was not effective as an antifungal agent, it may have potential as a growth promoter of beneficial fungi in the food and pharmaceutical industries.


Antifungal Agents , Fungi , Microbial Sensitivity Tests , Phenols , Plant Extracts , Sorghum , Sorghum/microbiology , Antifungal Agents/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fungi/drug effects , Fungi/growth & development , Spores, Fungal/drug effects , Spores, Fungal/growth & development
18.
Carbohydr Polym ; 337: 122159, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710574

Chitosan and chitosan derivatives can kill pathogenic microorganisms including bacteria and fungi. The antimicrobial activity is dependent on the degree of acetylation, substituent structure, and molecular weight. Over the past four decades, numerous studies have endeavored to elucidate the relationship between molecular weight and the activity against microorganisms. However, investigators have reported divergent and, at times, conflicting conclusions. Here a bilinear equation is proposed, delineating the relationship between antimicrobial activity, defined as log (1/MIC), and the molecular weight of chitosan and chitosan derivatives. Three constants AMin, AMax, and CMW govern the shape of the curve determined by the equation. The constant AMin denotes the minimal activity expected as the molecular weight tends towards zero while AMax represents the maximal activity observed for molecular weights exceeding CMW, the critical molecular weight required for max activity. This equation was applied to analyze data from seven studies conducted between 1984 and 2019, which reported MIC (Minimum Inhibitory Concentration) values against bacteria and fungi for various molecular weights of chitosan and its derivatives. All the 29 datasets exhibited a good fit (R2 ≥ 0.5) and half excellent (R2 ≥ 0.95) fit to the equation. The CMW generally ranged from 4 to 10 KD for datasets with an excellent fit to the equation.


Bacteria , Chitosan , Fungi , Microbial Sensitivity Tests , Molecular Weight , Chitosan/chemistry , Chitosan/pharmacology , Fungi/drug effects , Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Polymers/chemistry , Polymers/pharmacology
19.
Curr Microbiol ; 81(7): 184, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771325

Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.


Endophytes , Pseudomonas , Soil Microbiology , Endophytes/physiology , Pseudomonas/physiology , Cucurbitaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hypocreales/physiology , Fungi/physiology , Fungi/drug effects , Bacteria/classification , Bacteria/drug effects , Biological Control Agents , Plant Roots/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism
20.
Environ Pollut ; 352: 124120, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38729506

Among the components of fine particulate matter (PM2.5), the contributions of airborne microorganisms and antibiotic resistance genes (ARGs) to health risks have been overlooked. Airborne microbial dynamics exhibit a unique diurnal cycle due to environmental influences. However, the specific roles of PM2.5 chemical properties resulting from fossil fuel combustion in driving circadian fluctuations in microbial populations and ARGs remain unclear. This study explored the interactions between toxic components and microbial communities during the heating period to understand the variations in ARGs. Bacterial and fungal communities showed a higher susceptibility to diel variations in PM2.5 compared to their chemical properties. Mantel tests revealed that chemical properties and microbial community interactions contribute differently to ARG variations, both directly and indirectly, during circadian fluctuations. Our findings highlight that, during the daytime, the enrichment of pathogenic microorganisms and ARGs increases the risk of PM2.5 toxicity. Conversely, during the nighttime, the utilization of water-soluble ions by the fungal community increased, leading to a significant increase in fungal biomass. Notably, Aspergillus exhibited a significant correlation with mobile genetic elements and ARGs, implying that this genus is a crucial driver of airborne ARGs. This study provides novel insights into the interplay between the chemical composition, microbial communities, and ARGs in PM, underscoring the urgent need for a comprehensive understanding of effective air pollution control strategies.


Air Microbiology , Air Pollutants , Drug Resistance, Microbial , Particulate Matter , Particulate Matter/toxicity , Air Pollutants/toxicity , Drug Resistance, Microbial/genetics , Seasons , Fungi/drug effects , Fungi/genetics , Bacteria/drug effects , Bacteria/genetics , Environmental Monitoring , Heating , Microbiota/drug effects , Microbiota/genetics
...