Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.507
Filter
1.
Food Microbiol ; 124: 104611, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244364

ABSTRACT

The quality and sensory attributes of juices are influenced by their natural microbiota and the microorganisms found on filtration membranes. This study aimed to assess the influence of natural microbiota and specific contaminants, including Candida krusei, Rhodotorula mucilaginosa, Debaryomyces prosopidis, Ralstonia insidiosa, and Lactiplantibacillus paraplantarum, isolated from cranberry juice and its associated industrial filtration membranes, on the characteristics of cranberry juice. Their growth kinetics and impacts on total phenols, total anthocyanins, total proanthocyanins, total organic acids, pH, titratable acidity, and volatile compounds were assessed. During the 42 h fermentation period, Candida krusei and Ralstonia insidiosa exhibited significant growth, increasing by 1-log and 3-log, respectively. The natural microbiota led to a 7% and 6% reduction in anthocyanins and proanthocyanidins, while Candida krusei and Rhodotorula mucilaginosa caused losses of 10% and 7% in proanthocyanidins, respectively. Organic acid content remained stable, except for an 8% decrease caused by Ralstonia insidiosa. Volatile compounds underwent significant increases, particularly in green (703%), winey (100%), mushroom (306%), and fusel (2678%) notes. These findings underscore the rapid impact of microorganisms from natural microbiota and filtration membranes on cranberry juice characteristics, highlighting the importance for beverage industries to prioritize customer safety and satisfaction.


Subject(s)
Food Handling , Fruit and Vegetable Juices , Microbiota , Proanthocyanidins , Vaccinium macrocarpon , Volatile Organic Compounds , Vaccinium macrocarpon/chemistry , Vaccinium macrocarpon/microbiology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Proanthocyanidins/analysis , Odorants/analysis , Fermentation , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Bacteria/metabolism , Anthocyanins/analysis , Candida/growth & development , Fungi/classification , Fungi/metabolism , Fungi/isolation & purification , Fungi/growth & development
2.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1705-1715, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235030

ABSTRACT

Understanding the composition and spatial distribution patterns of microbial communities in plateau peatland soils is crucial for preserving the structural and functional stability of highland wetlands. We collected 50 soil samples from the core conservation area of Zoige peatland along horizontal and vertical distributions to analyze the soil bacterial and fungal diversity by using high-throughput sequencing technology, combined with Mantel tests and multiple regression on matrices (MRM) statistical methods, as well as the spatial distribution characteristics of community structure similarity at a local scale. The results showed that the dominant soil bacterial and fungal groups were Chloroflexi (accounting for 33.2% and 25.1% of the total bacterial community in horizontal and vertical directions, respectively) and Ascomycota (54.7% and 76.4%). The similarity of microbial community structure in both horizontal and vertical directions decreased with increasing spatial distance of the sampling points. The turnover rates of bacterial and fungal communities in the vertical direction were 8.8 and 8.6 times as those in the horizontal direction, respectively. Based on the relative abundance of the communities, we classified microbes into six groups. As the number of rare species in the community increased, the slope of community distance decay decreased. The conditionally rare or abundant taxa (CRAT) category group showed the most similar spatial distribution characteristics to the total microbial community. Mantel analysis indicated that soil organic carbon, total nitrogen, and available phosphorus were key factors driving the distribution of bacterial and fungal communities in the horizontal direction, while soil organic carbon, available carbon, pH, and soil bulk density were the main factors determining the vertical distribution. MRM analysis further showed that both soil physicochemical indicators and spatial distance significantly affected the assembly of microbial communities, where soil factors explained more about the vertical distribution of microbial communities than the horizontal distribution. The impact of soil factors on microbial community distribution was much greater than that of spatial factors through diffusion limitation. In summary, the microbial communities in the plateau peatland soils exhibited more pronounced vertical distribution differences and environmental response characteristics.


Subject(s)
Bacteria , Fungi , Soil Microbiology , China , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Bacteria/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/growth & development , Wetlands , Spatial Analysis , Biodiversity , Altitude , Soil/chemistry , Microbiota , Chloroflexi/classification , Chloroflexi/growth & development , Chloroflexi/isolation & purification , Ascomycota/growth & development , Ascomycota/isolation & purification
3.
Sci Rep ; 14(1): 17816, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090225

ABSTRACT

Humic acid (HA) can substantially enhance plant growth and improve soil health. Currently, the impacts of HA concentrations variation on the development and soil quality of Panax notoginseng (Sanqi) from the forest understorey are still unclear. In this study, exogenous HA was administered to the roots of Sanqi at varying concentrations (2, 4, and 6 ml/L). Subsequently, the diversity and community structure of bacteria and fungi were assessed through high-throughput sequencing technology. The investigation further involved analyzing the interplay among the growth of sanqi, soil edaphic factors, and the microbial network stability. Our finding revealed that moderate concentrations (4 ml/L) of HA improved the fresh/dry weight of Sanqi and NO3--N levels. Compared with control, the moderate concentrations of HA had a notable impact on the bacterial and fungal communities compositions. However, there was no significant difference in the α and ß diversity of bacteria and fungi. Moreover, the abundance of beneficial bacteria (Bradyrhizobium) and harmful bacteria (Xanthobacteraceae) increased and decreased at 4 ml/L HA, respectively, while the bacterial and fungal network stability were enhanced. Structural equation model (SEM) revealed that the fresh weight of Sanqi and bacterial and fungal communities were the factors that directly affected the microbial network stability at moderate concentrations of HA. In conclusion, 4 ml/L of HA is beneficial for promoting Sanqi growth and soil quality. Our study provides a reference for increasing the yield of Sanqi and sustainable development of the Sanqi-pine agroforestry system.


Subject(s)
Fertilizers , Forests , Fungi , Humic Substances , Panax notoginseng , Soil Microbiology , Panax notoginseng/growth & development , Humic Substances/analysis , Fertilizers/analysis , Fungi/growth & development , Fungi/drug effects , Bacteria/growth & development , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Plant Roots/growth & development , Plant Roots/microbiology , Soil/chemistry , Microbiota/drug effects
4.
Int J Food Microbiol ; 425: 110886, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39214027

ABSTRACT

The control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study. PeAfpA and PdAfpB exhibited potent antifungal activity in synthetic media, completely inhibiting the growth of most of the fungi evaluated in the range of 0.5-32 µg/mL. The efficacy of the four AFPs was also tested in fruit juices against ascospores of five HRFs relevant to the food industry, including P. fulvus, P. niveus, P. variotii, A. fischeri and T. flavus. PdAfpB was the most effective protein in fruit juices, since it completely inhibited the growth of the five species tested in at least one of the fruit juices evaluated. This is the first study to demonstrate the activity of AFPs against fungal ascospores. Finally, a challenge test study showed that PdAfpB, at a concentration of 32 µg/mL, protected apple fruit juice artificially inoculated with ascospores of P. variotii for 17 days, highlighting the potential of the protein as a preservative in the fruit juice industry.


Subject(s)
Antifungal Agents , Food Preservation , Fruit and Vegetable Juices , Fungal Proteins , Penicillium , Fruit and Vegetable Juices/microbiology , Penicillium/drug effects , Penicillium/growth & development , Food Preservation/methods , Antifungal Agents/pharmacology , Fungal Proteins/pharmacology , Hot Temperature , Fungi/drug effects , Fungi/growth & development , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Microbial Viability/drug effects , Food Microbiology
5.
Food Microbiol ; 123: 104581, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038887

ABSTRACT

The rot caused by pathogens during the storage of table grapes is an important factor that affects the development of the grape industry and food safety, and it cannot be ignored. The development of innovative methods for pathogen control should be based on a comprehensive understanding of the overall microbial community changes that occur during grape storage. The study aims to investigate the relationship between the native microbiota (including beneficial, pathogenic and spoilage microorganisms) on grape surfaces and the development of disease during grape storage. In this study, the bacteria and fungi present on grape surfaces were analyzed during storage under room temperature conditions using high-throughput sequencing. During the storage of grapes at room temperature, observable diseases and a noticeable decrease in quality were observed at 8 days. Microbial community analysis showed that 4996 bacterial amplicon sequence variants (ASVs) and 488 fungal ASVs were determined. The bacterial richness exhibited an initial increase followed by a subsequent decrease. However, the diversity exhibited a distinct pattern of gradual decrease. The fungal richness and community diversity both exhibit a gradual decrease during the storage of grapes. Fungal ß-diversity analysis showed that despite the absence of rot and the healthy state of grapes on the first and fourth days, the fungal ß-diversity exhibited a significant difference. The analysis of changes in genera abundances suggested that Candidatus Profftella and Aspergillus exhibited dominance in the rotting grape at 16 days, which are the main pathogens that caused disease in the present study. The co-occurrence networks among the microbial showed that the Candidatus proftella genera has a positive correlation with Aspergillus niger, indicating that they work together to cause disease and promote growth in grapes. Predicting the function of bacterial communities found that the microorganisms associated with lipid metabolism at 4 days play an important role in the process of postharvest decay of grapes.


Subject(s)
Bacteria , Food Storage , Fungi , Microbiota , Vitis , Vitis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/growth & development , Fruit/microbiology , Plant Diseases/microbiology , Food Microbiology , High-Throughput Nucleotide Sequencing , Biodiversity
6.
mSphere ; 9(7): e0047624, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38980074

ABSTRACT

Sterilization is commonly used to remove or reduce the biotic constraints of a soil to allow recolonization by soil-dwelling organisms, with autoclaving and gamma irradiation being the most frequently used approaches. Many studies have characterized sterilization impacts on soil physicochemical properties, with gamma irradiation often described as the preferred approach, despite the lower cost and higher scalability of autoclaving. However, few studies have compared how sterilization techniques impact soil recolonization by microorganisms. Here, we compared how two sterilization approaches (autoclaving; gamma irradiation) and soil washing impacted microbial recolonization of soil from a diverse soil inoculum. Sterilization method had little impact on microbial alpha diversity across recolonized soils. For sterile soil regrowth microcosms, species richness and diversity were significantly reduced by autoclaving relative to gamma irradiation, particularly for fungi. There was no impact of sterilization method on bacterial composition in recolonized soils and minimal impact on fungal composition (P = 0.05). Washing soils had a greater impact on microbial composition than sterilization method, and sterile soil regrowth had negligible impacts on microbial recolonization. These data suggest that sterilization method has no clear impact on microbial recolonization, at least across the soils tested, indicating that soil autoclaving is an appropriate and economical approach for biotically clearing soils.IMPORTANCESterilized soils represent soil-like environments that act as a medium to study microbial colonization dynamics in more "natural" settings relative to artificial culturing environments. Soil sterilization is often carried out by gamma irradiation or autoclaving, which both alter soil properties, but gamma irradiation is thought to be the gentler technique. Gamma irradiation can be cost prohibitive and does not scale well for larger experiments. We sought to examine how soil sterilization technique can impact microbial colonization, and additionally looked at the impact of soil washing which is believed to remove soil toxins that inhibit soil recolonization. We found that both gamma-irradiated and autoclaved soils showed similar colonization patterns when reintroducing microorganisms. Soil washing, relative to sterilization technique, had a greater impact on which microorganisms were able to recolonize the soil. When allowing sterilized soils to regrow (i.e., persisting microorganisms), gamma irradiation performed worse, suggesting that gamma irradiation does not biotically clear soils as well as autoclaving. These data suggest that both sterilization techniques are comparable, and that autoclaving may be more effective at biotically clearing soil.


Subject(s)
Bacteria , Fungi , Gamma Rays , Soil Microbiology , Soil , Sterilization , Sterilization/methods , Bacteria/radiation effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry , Fungi/radiation effects , Fungi/growth & development , Microbiota/radiation effects , Hot Temperature , Biodiversity
7.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39003240

ABSTRACT

Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.


Subject(s)
Biodiversity , Diatoms , Fungi , Diatoms/growth & development , Fungi/genetics , Fungi/classification , Fungi/growth & development , Rivers/microbiology , Seawater/microbiology , Ciliophora/growth & development , Ciliophora/genetics , Cercozoa/genetics , Cercozoa/growth & development , Microbiota , Eukaryota/growth & development
8.
Food Chem ; 460(Pt 2): 140595, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39079357

ABSTRACT

Jute in food packaging offers several advantages, including cost-effectiveness, biodegradability, renewability, and low environmental impact. Nevertheless, its hydrophilic characteristic makes it susceptible to airborne humidity and precipitation moisture. We combated this by chemically treating jute to make it water-resistant. The coated jute (WCA = âˆ¼162°) exhibits high mechanical endurance against exposure to air (>1 month), ultrasonic washing (6 h), brush scrubbing (>50 cycles), and mutual abrasion (>150 cycles), along with good thermal stability. During a 2-month experiment involving seed storage in an RH of 85%, wheat grains stored in the coated bag showed 8.08% less moisture content than that stored in control. Furthermore, the preserved grains in the control jute exhibited altered colour, texture, and fungal development. Additionally, compared to the control, the coated jute delivers >50% bacterial growth reduction in 48 h. The proposed jute offers a sustainable packaging solution that promotes eco-friendly practices and reduces plastic waste.


Subject(s)
Food Packaging , Hydrophobic and Hydrophilic Interactions , Food Packaging/instrumentation , Triticum/chemistry , Triticum/growth & development , Triticum/microbiology , Bacteria/growth & development , Bacteria/drug effects , Fungi/growth & development , Fungi/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
9.
Food Chem ; 460(Pt 2): 140569, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39083967

ABSTRACT

The objective of this work was to prepare and characterize liposomes containing co-encapsulated ascorbic acid (AA) and ascorbyl palmitate (AP), as well as to evaluate their stability, cytotoxicity, antioxidant, and antimicrobial activity. Through the pre-formulation studies, it was possible to improve the formulation, as leaving it more stable and with a greater antioxidant activity, resulting in a formulation designated LIP-AAP, with 161 nm vesicle size, 0.215 polydispersity index, -31.7 mV zeta potential, and pH of 3.34. Encapsulation efficiencies were 37% for AA and 79% for AP, and the content was 1 mg/mL for each compound. The optimized liposomes demonstrated stability under refrigeration for 60 days, significant antioxidant activity (31.4 µMol of TE/mL), and non-toxicity, but no antimicrobial effects against bacteria and fungi were observed. These findings confirm that the co-encapsulated liposomes are potent, stable antioxidants that maintain their physical and chemical properties under optimal storage conditions.


Subject(s)
Anti-Infective Agents , Antioxidants , Ascorbic Acid , Drug Stability , Liposomes , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Ascorbic Acid/analogs & derivatives , Liposomes/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Bacteria/drug effects , Particle Size , Fungi/drug effects , Fungi/growth & development , Drug Compounding
10.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967261

ABSTRACT

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungi/drug effects , Fungi/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Drug Design , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrimidines/chemistry , Pyrimidines/pharmacology , Molecular Structure , Imidazoles/chemistry , Imidazoles/pharmacology
11.
PLoS One ; 19(7): e0299421, 2024.
Article in English | MEDLINE | ID: mdl-38954713

ABSTRACT

Mold infestations in buildings pose significant challenges to human health, affecting both private residences and hospitals. While molds commonly trigger asthma and allergies in the immunocompetent, they can cause life-threatening diseases in the immunocompromised. Currently, there is an unmet need for new strategies to reduce or prevent mold infestations. Far-UVC technology can inactivate microorganisms while remaining safe for humans. This study investigates the inhibitory efficacy of far-UVC light at 222 nm on the growth of common mold-producing fungi, specifically Penicillium candidum, when delivered in low-dose on-off duty cycles, a configuration consistent with its use in real-world settings. The inhibitory effect of the low-dose duty cycles was assessed on growth induced by i) an adjacent spore-producing P. candidum donor and ii) P. candidum spores seeded directly onto agar plates. In both setups, the far-UVC light significantly inhibited both vertical and horizontal growth of P. candidum, even when the UV doses were below the Threshold Value Limit of 23 mJ/cm2. These results suggest that far-UVC light holds the potential to improve indoor air quality by reducing or preventing mold growth, also when people are present.


Subject(s)
Penicillium , Ultraviolet Rays , Penicillium/growth & development , Penicillium/radiation effects , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Fungi/radiation effects , Fungi/growth & development , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Threshold Limit Values
12.
Folia Microbiol (Praha) ; 69(4): 697-712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937405

ABSTRACT

Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.


Subject(s)
Agriculture , Fertilizers , Fungi , Phosphates , Plant Development , Soil Microbiology , Phosphates/metabolism , Fungi/metabolism , Fungi/growth & development , Agriculture/methods , Fertilizers/analysis , Soil/chemistry , Mycorrhizae/metabolism , Mycorrhizae/physiology , Phosphorus/metabolism
13.
Huan Jing Ke Xue ; 45(6): 3553-3561, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897775

ABSTRACT

This study was conducted to clarify the long-term effects of biochar application on the structure and function of the fungal community in continuous cropping watermelon soil. Taking watermelon root soil as the research object, Illumina NovaSeq high-throughput sequencing and FUNGuild platform were used to analyze the differences in soil fungal community composition, diversity, and function after 3-year biochar additions of 7.5, 15.0, and 30.0 t·hm-2 and to explore the correlation between soil environmental factors and fungal community structure under the control of biochar. The results showed that compared to that in the absence of biochar (control), the soil pH, available phosphorus, available potassium, total nitrogen, organic matter, and cation exchange capacity increased, but available nitrogen decreased with biochar addition. High-throughput sequencing results showed that biochar amendment improved the fungal community structure in continuous cropping watermelon soil and increased the richness and diversity of soil fungi. A total of 922 OTU were obtained from all soil samples, and the species annotation results indicated that the dominant fungal groups were Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Glomeromycota, with these phyla accounting for 85.70 %-92.45 % of the total sequences.The relative abundance of Ascomycota and Basidiomycota decreased, whereas the abundance of Mortierellomycota and Glomeromycota increased with biochar addition.At the genus level, the application of biochar increased the relative abundance of Mortierella and Rhizophlyctis but decreased the abundance of Fusarium. The Mantel test showed that soil available potassium, available nitrogen, organic matter, and pH were the main environmental factors leading to the shift in the soil fungal community composition.The functional prediction with FUNGuild showed that the many nutrient types among the different treatments were saprotrophic, pathotrophic, and symbiotrophic. The relative abundance of pathotrophs significantly decreased, but the abundance of symbiotrophs significantly increased with the medium and high doses of biochar treatment. In conclusion, the application of biochar changed the soil physicochemical properties, promoted the development of soil fungal community structure and functional groups in a healthy and beneficial direction, and improved the quality of continuous cropping watermelon soil.


Subject(s)
Charcoal , Citrullus , Fungi , Soil Microbiology , Soil , Charcoal/chemistry , Citrullus/growth & development , Fungi/growth & development , Fungi/classification , Soil/chemistry , Mycobiome , Fertilizers
14.
Sci Rep ; 14(1): 14160, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898096

ABSTRACT

Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.


Subject(s)
Crops, Agricultural , Fungi , Nicotiana , Soil Microbiology , Soil , Nicotiana/microbiology , Nicotiana/growth & development , Fungi/growth & development , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Soil/chemistry , Agriculture/methods , Biodiversity
15.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38839598

ABSTRACT

Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.


Subject(s)
Bacteria , Microbiota , Rhizosphere , Soil Microbiology , Solanum tuberosum , Solanum tuberosum/microbiology , Solanum tuberosum/growth & development , Bacteria/classification , Bacteria/growth & development , Bacteria/genetics , Bacteria/isolation & purification , Fungi/growth & development , Fungi/classification , Fungi/genetics , Plant Roots/microbiology , Plant Roots/growth & development
16.
Int J Food Microbiol ; 421: 110782, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38851175

ABSTRACT

The impact of paprika and dextrose addition on the surface of dry cured loins was analysed attending to differences in microbiota composition and aroma profile. Three different types of loins containing either dextrose (D), paprika (P) or a mixture of dextrose and paprika (DP) were manufactured. The loins were characterized using physic-chemical parameters, free amino acids, volatile compounds and aroma sensorial analysis, as well as applying microbiological counts and metagenomics of the 16S rRNA gene and its rDNA region. The analysis of volatile compounds clearly distinguished all loins, whereas the total content of free amino acids only separated P from D and DP loins. The main sensory differences were linked to paprika addition, which increased the perception of paprika and smoky odors as well as cured, savoury and cheesy notes. Microbial counts analysis could not differentiate between the three loin types; however, metagenomics analysis revealed clear differences in key bacterial and fungal genera among the three loins. Paprika addition favoured dominance of Latilactobacillus in the microbiota of P loins. On the contrary, dextrose addition caused the dominance of Staphylococcus in the microbiota of D loins. In DP loins, both genera were similarly represented in the bacterial community. Regarding fungi, large differences could be observed within the P and D loins, whereas the proportion of Debaryomyces in DP loins increased. The microbiota composition of DP loins controlled the lipid oxidation phenomenon, reducing the generation of derived volatiles producing rancid notes and increase the volatile compounds derived from amino acids such as branched aldehydes, pyrazines and pyrroles, providing particular aroma notes to the loins.


Subject(s)
Bacteria , Glucose , Microbiota , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology , Odorants/analysis , Glucose/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Microbiota/drug effects , Humans , Fungi/classification , Fungi/drug effects , Fungi/growth & development , Amino Acids/metabolism , Food Microbiology
17.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38925654

ABSTRACT

Differences between arbuscular (AM) and ectomycorrhizal (EcM) trees strongly influence forest ecosystem processes, in part through their impact on saprotrophic fungal communities. Ericoid mycorrhizal (ErM) shrubs likely also impact saprotrophic communities given that they can shape nutrient cycling by slowing decomposition rates and intensifying nitrogen limitation. We investigated the depth distributions of saprotrophic and EcM fungal communities in paired subplots with and without a common understory ErM shrub, mountain laurel (Kalmia latifolia L.), across an AM to EcM tree dominance gradient in a temperate forest by analyzing soils from the organic, upper mineral (0-10 cm), and lower mineral (cumulative depth of 30 cm) horizons. The presence of K. latifolia was strongly associated with the taxonomic and functional composition of saprotrophic and EcM communities. Saprotrophic richness was consistently lower in the Oa horizon when this ErM shrub species was present. However, in AM tree-dominated plots, the presence of the ErM shrub was associated with a higher relative abundance of saprotrophs. Given that EcM trees suppress both the diversity and relative abundance of saprotrophic communities, our results suggest that separate consideration of ErM shrubs and EcM trees may be necessary when assessing the impacts of plant mycorrhizal associations on belowground communities.


Subject(s)
Biodiversity , Mycorrhizae , Soil Microbiology , Trees , Mycorrhizae/genetics , Mycorrhizae/physiology , Mycorrhizae/growth & development , Mycorrhizae/classification , Trees/microbiology , Forests , Mycobiome , Fungi/classification , Fungi/genetics , Fungi/growth & development , Soil/chemistry , Ecosystem
18.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1293-1300, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886428

ABSTRACT

Reductive soil disinfestation (RSD) is an effective method for remediating degraded facility vegetable soils. However, the effectiveness of RSD using green manure as a carbon source in the field has not yet been clarified. We investigated the effects of RSD and organic fertilizer application on soil microbial community composition, diversity, and stability in a degraded facility vegetable soil. There were six treatments, including no fertilization (CK), no fertilization and soil flooded and mulched with plastic film (FF), soil amended with chicken manure (OM), soil amended with chicken manure and flooded and mulched with plastic film (OMR), soil amended with Sesbania cannabina (TF), and soil amended with S. cannabina and flooded and mulched with plastic film (TR). The results showed that the OMR and TR treatments significantly decreased bacterial Chao1 index, altered bacterial and fungal community structure, and increased the relative abundances of Bacillus, Rhodococcus, Clostridium, and Penicillium. The TR treatment significantly reduced the relative abundance of Fusarium. Results of redundancy analysis and Mantel test analysis suggested that soil ammonium nitrogen and dissolved organic carbon contents were the key factors influencing bacterial community composition, and soil pH was the key factor affecting fungal community composition. Results of cohesion analysis showed that the OMR and TR treatments significantly improved bacterial community stability, and that there was no difference between OMR and TR treatments. The TR treatment enhanced fungal community stability, which was significantly higher than the OMR treatment. Therefore, the RSD with green manure as carbon source could be effective remediation practice to improve soil health.


Subject(s)
Fertilizers , Manure , Soil Microbiology , Soil , Vegetables , Soil/chemistry , Vegetables/growth & development , Bacteria/growth & development , Bacteria/classification , Bacteria/metabolism , Microbiota , Organic Chemicals/analysis , Fungi/growth & development
19.
Environ Microbiol ; 26(6): e16662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840258

ABSTRACT

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.


Subject(s)
Mycorrhizae , Picea , Plant Roots , Picea/microbiology , Picea/growth & development , Plant Roots/microbiology , Plant Roots/growth & development , Mycorrhizae/genetics , Mycorrhizae/growth & development , Mycorrhizae/physiology , Norway , Symbiosis , Fungi/genetics , Fungi/classification , Fungi/growth & development , Ascomycota/genetics , Ascomycota/growth & development
20.
Environ Microbiol Rep ; 16(3): e13280, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922748

ABSTRACT

Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250-500, and <250 µm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal-bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.


Subject(s)
Bacteria , Particle Size , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , Bacteria/metabolism , Fungi/growth & development , Fungi/classification , Fungi/genetics , Fungi/physiology , Soil Microbiology , Hydrogen-Ion Concentration , Ascomycota/growth & development , Ascomycota/physiology
SELECTION OF CITATIONS
SEARCH DETAIL