Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 665
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731808

Single-cell RNA sequencing (scRNAseq) is a rapidly advancing field enabling the characterisation of heterogeneous gene expression profiles within a population. The cell cycle phase is a major contributor to gene expression variance between cells and computational analysis tools have been developed to assign cell cycle phases to cells within scRNAseq datasets. Whilst these tools can be extremely useful, all have the drawback that they classify cells as only G1, S or G2/M. Existing discrete cell phase assignment tools are unable to differentiate between G2 and M and continuous-phase-assignment tools are unable to identify a region corresponding specifically to mitosis in a pseudo-timeline for continuous assignment along the cell cycle. In this study, bulk RNA sequencing was used to identify differentially expressed genes between mitotic and interphase cells isolated based on phospho-histone H3 expression using fluorescence-activated cell sorting. These gene lists were used to develop a methodology which can distinguish G2 and M phase cells in scRNAseq datasets. The phase assignment tools present in Seurat were modified to allow for cell cycle phase assignment of all stages of the cell cycle to identify a mitotic-specific cell population.


G2 Phase , Mitosis , Mitosis/genetics , Humans , G2 Phase/genetics , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Histones/metabolism , Histones/genetics , Gene Expression Profiling/methods , Computational Biology/methods , Software
2.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604522

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Prostatic Neoplasms, Castration-Resistant , Protein-Tyrosine Kinases , Receptors, Androgen , Serine-Arginine Splicing Factors , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , G2 Phase/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35216098

The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.


Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Cell Survival/genetics , Child , Combined Modality Therapy/methods , Electric Stimulation Therapy/methods , Endoplasmic Reticulum Stress/genetics , G2 Phase/genetics , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Mitochondria/genetics , Resting Phase, Cell Cycle/genetics
4.
Bioengineered ; 12(2): 12647-12658, 2021 12.
Article En | MEDLINE | ID: mdl-34903139

Identification of novel anti-tumor target is crucial for cancer diagnosis, prognosis, and therapeutic strategy. The study aimed to explore the roles and interaction of DEAD-box helicase 21 (DDX21) and cell division cycle 5-like (CDC5L) in colorectal cancer (CRC) progression. Levels of DDX21 and CDC5L were detected in colorectal cancer cell lines by RT-qPCR and Western blot assay. The role of DDX21 and CDC5L on the cell proliferation, cell cycle and tumor growth were evaluated both in vitro and in vivo. The interaction of DDX21 and CDC5L was predicted by The STRING publicly available data and verified by immunoprecipitation. The results showed that DDX21 was dramatically upregulated in colorectal cancer cells. In vivo and in vitro experiments revealed that downregulation of DDX21 suppressed colorectal cancer cell proliferation, colony formation, cell cycle development, and tumor growth, while overexpression of CDC5L reversed the suppressive effects of DDX21 silencing. Furthermore, DDX21 interacted with CDC5L to exert the tumor-promoting effects in CRC. In summary, the data indicate a novel role for DDX21/CDC5L in the development of CRC, which enrich the therapeutic strategy for CRC.


Cell Cycle Proteins/metabolism , Cell Cycle/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DEAD-box RNA Helicases/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , DEAD-box RNA Helicases/metabolism , Disease Progression , Female , G2 Phase/genetics , Gene Silencing , Humans , Mice, Inbred BALB C , Mice, Nude , Mitosis/genetics , Protein Binding
5.
Stem Cell Reports ; 16(11): 2659-2673, 2021 11 09.
Article En | MEDLINE | ID: mdl-34624246

Mouse embryonic stem cells (ESCs) show cell-to-cell heterogeneity. A small number of two-cell-like cells (2CLCs) marked by endogenous retrovirus activation emerge spontaneously. The 2CLCs are unstable and they are prone to transiting back to the pluripotent state without extrinsic stimulus. To understand how this bidirectional transition takes place, we performed single-cell RNA sequencing on isolated 2CLCs that underwent 2C-like state exit and re-entry, and revealed a step-by-step transitional process between 2C-like and pluripotent states. Mechanistically, we found that cell cycle played an important role in mediating these transitions by regulating assembly of the nucleolus and peri-nucleolar heterochromatin to influence 2C gene Dux expression. Collectively, our findings provide a roadmap of the 2C-like state entry and exit in ESCs and also a causal role of the cell cycle in promoting these transitions.


Cell Cycle/genetics , Cell Differentiation/genetics , Cell Division/genetics , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Line , Cell Nucleolus/metabolism , G1 Phase/genetics , G2 Phase/genetics , Gene Expression Profiling/methods , Heterochromatin/genetics , Heterochromatin/metabolism , Mice , RNA-Seq/methods , Single-Cell Analysis/methods
6.
Article En | MEDLINE | ID: mdl-34266628

We recently reported that when low doses of ionizing radiation induce low numbers of DNA double-strand breaks (DSBs) in G2-phase cells, about 50 % of them are repaired by homologous recombination (HR) and the remaining by classical non-homologous end-joining (c-NHEJ). However, with increasing DSB-load, the contribution of HR drops to undetectable (at ∼10 Gy) as c-NHEJ dominates. It remains unknown whether the approximately equal shunting of DSBs between HR and c-NHEJ at low radiation doses and the predominant shunting to c-NHEJ at high doses, applies to every DSB, or whether the individual characteristics of each DSB generate processing preferences. When G2-phase cells are irradiated, only about 10 % of the induced DSBs break the chromatids. This breakage allows analysis of the processing of this specific subset of DSBs using cytogenetic methods. Notably, at low radiation doses, these DSBs are almost exclusively processed by HR, suggesting that chromatin characteristics awaiting characterization underpin chromatid breakage and determine the preferential engagement of HR. Strikingly, we also discovered that with increasing radiation dose, a pathway switch to c-NHEJ occurs in the processing of this subset of DSBs. Here, we confirm and substantially extend our initial observations using additional methodologies. Wild-type cells, as well as HR and c-NHEJ mutants, are exposed to a broad spectrum of radiation doses and their response analyzed specifically in G2 phase. Our results further consolidate the observation that at doses <2 Gy, HR is the main option in the processing of the subset of DSBs generating chromatid breaks and that a pathway switch at doses between 4-6 Gy allows the progressive engagement of c-NHEJ. PARP1 inhibition, irrespective of radiation dose, leaves chromatid break repair unaffected suggesting that the contribution of alternative end-joining is undetectable under these experimental conditions.


Chromatids/genetics , DNA End-Joining Repair/genetics , DNA/genetics , Homologous Recombination/genetics , Recombinational DNA Repair/genetics , Animals , CHO Cells , Cell Line , Cricetulus , DNA Breaks, Double-Stranded , DNA Repair/genetics , G2 Phase/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Radiation, Ionizing
7.
Theranostics ; 11(11): 5248-5266, 2021.
Article En | MEDLINE | ID: mdl-33859745

Mesenchymal stem cells-derived exosomes (MSC-exos) have attracted great interest as a cell-free therapy for acute kidney injury (AKI). However, the in vivo biodistribution of MSC-exos in ischemic AKI has not been established. The potential of MSC-exos in promoting tubular repair and the underlying mechanisms remain largely unknown. Methods: Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to characterize the properties of human umbilical cord mesenchymal stem cells (hucMSCs) derived exosomes. The biodistribution of MSC-exos in murine ischemia/reperfusion (I/R) induced AKI was imaged by the IVIS spectrum imaging system. The therapeutic efficacy of MSC-exos was investigated in renal I/R injury. The cell cycle arrest, proliferation and apoptosis of tubular epithelial cells (TECs) were evaluated in vivo and in HK-2 cells. The exosomal miRNAs of MSC-exos were profiled by high-throughput miRNA sequencing. One of the most enriched miRNA in MSC-exos was knockdown by transfecting miRNA inhibitor to hucMSCs. Then we investigated whether this candidate miRNA was involved in MSC-exos-mediated tubular repair. Results:Ex vivo imaging showed that MSC-exos was efficiently homing to the ischemic kidney and predominantly accumulated in proximal tubules by virtue of the VLA-4 and LFA-1 on MSC-exos surface. MSC-exos alleviated murine ischemic AKI and decreased the renal tubules injury in a dose-dependent manner. Furthermore, MSC-exos significantly attenuated the cell cycle arrest and apoptosis of TECs both in vivo and in vitro. Mechanistically, miR-125b-5p, which was highly enriched in MSC-exos, repressed the protein expression of p53 in TECs, leading to not only the up-regulation of CDK1 and Cyclin B1 to rescue G2/M arrest, but also the modulation of Bcl-2 and Bax to inhibit TEC apoptosis. Finally, inhibiting miR-125b-5p could mitigate the protective effects of MSC-exos in I/R mice. Conclusion: MSC-exos exhibit preferential tropism to injured kidney and localize to proximal tubules in ischemic AKI. We demonstrate that MSC-exos ameliorate ischemic AKI and promote tubular repair by targeting the cell cycle arrest and apoptosis of TECs through miR-125b-5p/p53 pathway. This study provides a novel insight into the role of MSC-exos in renal tubule repair and highlights the potential of MSC-exos as a promising therapeutic strategy for AKI.


Acute Kidney Injury/genetics , Exosomes/genetics , Kidney Tubules, Proximal/physiology , Mesenchymal Stem Cells/physiology , MicroRNAs/genetics , Reperfusion Injury/genetics , Tumor Suppressor Protein p53/genetics , Acute Kidney Injury/physiopathology , Animals , Apoptosis/genetics , CDC2 Protein Kinase/genetics , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cell Line , Cell Proliferation/genetics , Cyclin B1/genetics , Epithelial Cells/physiology , G2 Phase/genetics , Humans , Ischemia/genetics , Ischemia/physiopathology , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2/genetics , Reperfusion Injury/physiopathology , Tissue Distribution/genetics , bcl-2-Associated X Protein/genetics
8.
Biochem Biophys Res Commun ; 546: 178-184, 2021 03 26.
Article En | MEDLINE | ID: mdl-33592502

APOBEC3B (A3B) is a cytosine deaminase that converts cytosine to uracil in single-stranded DNA. Cytosine-to-thymine and cytosine-to-guanine base substitution mutations in trinucleotide motifs (APOBEC mutational signatures) were found in various cancers including lymphoid hematological malignancies such as multiple myeloma and A3B has been shown to be an enzymatic source of mutations in those cancers. Although the importance of A3B is being increasingly recognized, it is unclear how A3B expression is regulated in cancer cells as well as normal cells. To answer these fundamental questions, we analyzed 1276 primary myeloma cells using single-cell RNA-sequencing (scRNA-seq) and found that A3B was preferentially expressed at the G2/M phase, in sharp contrast to the expression patterns of other APOBEC3 genes. Consistently, we demonstrated that A3B protein was preferentially expressed at the G2/M phase in myeloma cells by cell sorting. We also demonstrated that normal blood cells expressing A3B were also enriched in G2/M-phase cells by analyzing scRNA-seq data from 86,493 normal bone marrow mononuclear cells. Furthermore, we revealed that A3B was expressed mainly in plasma cells, CD10+ B cells and erythroid cells, but not in granulocyte-macrophage progenitors. A3B expression profiling in normal blood cells may contribute to understanding the defense mechanism of A3B against viruses, and partially explain the bias of APOBEC mutational signatures in lymphoid but not myeloid malignancies. This study identified the cells and cellular phase in which A3B is highly expressed, which may help reveal the mechanisms behind carcinogenesis and cancer heterogeneity, as well as the biological functions of A3B in normal blood cells.


Cell Division/genetics , Cytidine Deaminase/genetics , G2 Phase/genetics , Minor Histocompatibility Antigens/genetics , B-Lymphocytes/metabolism , Cells, Cultured , Erythroid Cells/metabolism , G1 Phase/genetics , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neprilysin/metabolism , Plasma Cells/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA-Seq , S Phase/genetics , Single-Cell Analysis
9.
Cell Rep ; 34(7): 108759, 2021 02 16.
Article En | MEDLINE | ID: mdl-33596418

As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.


Cell Division/genetics , DNA Replication/genetics , G2 Phase/genetics , RNA/genetics , Transcription Initiation Site/physiology , Humans
10.
Nat Commun ; 12(1): 33, 2021 01 04.
Article En | MEDLINE | ID: mdl-33397927

The Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC's selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors.


Origin Recognition Complex/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , DNA, Fungal/metabolism , G2 Phase/genetics , Genome, Fungal , Humans , Models, Genetic , Mutation/genetics , Nucleosomes/metabolism , Nucleotide Motifs/genetics , Origin Recognition Complex/chemistry , S Phase , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stochastic Processes , Transcription Initiation Site
11.
Cell Rep ; 34(3): 108636, 2021 01 19.
Article En | MEDLINE | ID: mdl-33472061

The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.


Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases/chemistry , 3-Phosphoinositide-Dependent Protein Kinases/genetics , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Amino Acid Sequence , Binding Sites , Drug Discovery , G2 Phase/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Models, Molecular , Molecular Targeted Therapy , Protein Binding
12.
Life Sci Alliance ; 4(3)2021 03.
Article En | MEDLINE | ID: mdl-33402344

Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.


Cell Cycle Proteins/metabolism , Cyclin A2/metabolism , Cytoplasm/metabolism , G2 Phase/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , S Phase/genetics , Signal Transduction/genetics , CDC2 Protein Kinase/deficiency , CDC2 Protein Kinase/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Cyclin A2/genetics , Cyclin-Dependent Kinase 2/deficiency , Cyclin-Dependent Kinase 2/genetics , DNA Damage/genetics , Enzyme Activation/genetics , HeLa Cells , Humans , Mitosis/genetics , Phosphorylation/genetics , Protein Binding , Transfection , Polo-Like Kinase 1
13.
Cells ; 9(12)2020 12 03.
Article En | MEDLINE | ID: mdl-33287368

Epithelial to mesenchymal transition (EMT) is associated with resistance during EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy. Here, we investigated whether EMT is associated with acquired resistance to 3rd generation EGFR-TKIs, and we explored the effects of cyclin-dependent kinase 7 (CDK7) inhibitors on EMT-mediated EGFR-TKIs resistance in non-small cell lung cancer (NSCLC). We established 3rd generation EGFR-TKI resistant cell lines (H1975/WR and H1975/OR) via repeated exposure to WZ4002 and osimertinib. The two resistant cell lines showed phenotypic changes to a spindle-cell shape, had a reduction of epithelial marker proteins, an induction of vimentin expression, and enhanced cellular mobility. The EMT-related resistant cells had higher sensitivity to THZ1 than the parental cells, although THZ1 treatment did not inhibit EGFR activity. This phenomenon was also observed in TGF-ß1 induced EMT cell lines. THZ1 treatment induced G2/M cell cycle arrest and apoptosis in all of the cell lines. In addition, THZ1 treatment led to drug-tolerant, EMT-related resistant cells, and these THZ1-tolerant cells partially recovered their sensitivity to 3rd generation EGFR-TKIs. Taken together, EMT was associated with acquired resistance to 3rd generation EGFR-TKIs, and CDK7 inhibitors could potentially be used as a therapeutic strategy to overcome EMT associated EGFR-TKI resistance in NSCLC.


Carcinoma, Non-Small-Cell Lung/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Division/drug effects , Cell Division/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , G2 Phase/drug effects , G2 Phase/genetics , Humans , Lung Neoplasms/genetics , Pyrimidines/pharmacology , Transforming Growth Factor beta1/genetics , Cyclin-Dependent Kinase-Activating Kinase
14.
Mol Syst Biol ; 16(11): e9245, 2020 11.
Article En | MEDLINE | ID: mdl-33206464

Dormancy is colloquially considered as extending lifespan by being still. Starved yeasts form dormant spores that wake-up (germinate) when nutrients reappear but cannot germinate (die) after some time. What sets their lifespans and how they age are open questions because what processes occur-and by how much-within each dormant spore remains unclear. With single-cell-level measurements, we discovered how dormant yeast spores age and die: spores have a quantifiable gene-expressing ability during dormancy that decreases over days to months until it vanishes, causing death. Specifically, each spore has a different probability of germinating that decreases because its ability to-without nutrients-express genes decreases, as revealed by a synthetic circuit that forces GFP expression during dormancy. Decreasing amounts of molecules required for gene expression-including RNA polymerases-decreases gene-expressing ability which then decreases chances of germinating. Spores gradually lose these molecules because they are produced too slowly compared with their degradations, causing gene-expressing ability to eventually vanish and, thus, death. Our work provides a systems-level view of dormancy-to-death transition.


Cell Cycle Checkpoints/genetics , Cell Death/genetics , Spores, Fungal/genetics , G2 Phase/genetics , Gene Deletion , Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Spores, Fungal/physiology , Transformation, Genetic/genetics
15.
J Mol Biol ; 432(24): 166715, 2020 12 04.
Article En | MEDLINE | ID: mdl-33217428

There are two major pathways for repairing DNA double-strand breaks (DSBs): homologous directed recombination (HDR) and non-homologous end-joining (NHEJ). While NHEJ functions throughout the cell cycle, HDR is only possible during S/G2 phases, suggesting that there are cell cycle-specific mechanisms regulating the balance between the two repair systems. The regulation exerted by CDKs on HDR has been extensively demonstrated, and here we present evidence that the CDK Pho85, in association with the G1 cyclin Pcl1, phosphorylates Yku80 on Ser 623 to regulate NHEJ activity. Cells bearing a non-phosphorylatable version of Yku80 show increased NHEJ and reduced HDR activity. Accordingly, yku80S623A cells present diminished viability upon treatment with the DSB-producer bleomycin, specifically in the G2 phase of the cell cycle. Interestingly, the mutation of the equivalent residue in human Ku80 increases sensitivity to bleomycin in several cancer cell lines, suggesting that this mechanism is conserved in humans. Altogether, our results reveal a new mechanism whereby G1-CDKs mediate the choice between HDR and NHEJ repair pathways, putting the error prone NHEJ on a leash and enabling error free HDR in G2 when homologous sequences are available.


DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , Ku Autoantigen/genetics , Recombinational DNA Repair/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle/genetics , Cyclin-Dependent Kinases/genetics , G2 Phase/genetics , Humans , MCF-7 Cells , Phosphorylation/genetics , Saccharomyces cerevisiae/genetics
16.
Elife ; 92020 09 02.
Article En | MEDLINE | ID: mdl-32876044

Larval tracheae of Drosophila harbour progenitors of the adult tracheal system (tracheoblasts). Thoracic tracheoblasts are arrested in the G2 phase of the cell cycle in an ATR (mei-41)-Checkpoint Kinase1 (grapes, Chk1) dependent manner prior to mitotic re-entry. Here we investigate developmental regulation of Chk1 activation. We report that Wnt signaling is high in tracheoblasts and this is necessary for high levels of activated (phosphorylated) Chk1. We find that canonical Wnt signaling facilitates this by transcriptional upregulation of Chk1 expression in cells that have ATR kinase activity. Wnt signaling is dependent on four Wnts (Wg, Wnt5, 6,10) that are expressed at high levels in arrested tracheoblasts and are downregulated at mitotic re-entry. Interestingly, none of the Wnts are dispensable and act synergistically to induce Chk1. Finally, we show that downregulation of Wnt signaling and Chk1 expression leads to mitotic re-entry and the concomitant upregulation of Dpp signaling, driving tracheoblast proliferation.


Checkpoint Kinase 1 , Drosophila Proteins , G2 Phase/genetics , Trachea , Wnt Signaling Pathway/genetics , Animals , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Drosophila/cytology , Drosophila/embryology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Trachea/cytology , Trachea/embryology , Wnt Proteins/genetics , Wnt Proteins/metabolism
17.
PLoS Genet ; 16(8): e1008988, 2020 08.
Article En | MEDLINE | ID: mdl-32841231

Achieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins, after S phase begins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 can hyperphosphorylate Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, our findings suggest that Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.


DNA Replication/genetics , Genome, Human/genetics , Replication Origin/genetics , Segmental Duplications, Genomic/genetics , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Cyclin A/genetics , G2 Phase/genetics , Geminin/genetics , Genes, Duplicate/genetics , HEK293 Cells , Humans , Minichromosome Maintenance Proteins/genetics , Phosphorylation/genetics , S Phase/genetics
18.
J Cell Mol Med ; 24(16): 9125-9134, 2020 08.
Article En | MEDLINE | ID: mdl-32618099

Lipase member H (LIPH), a novel member of the triglyceride lipase family. The clinical implications of its expression in breast cancer are still unclear. Therefore, in this study, we investigated the associations between LIPH and the tumorigenic behaviours of 144 triple-negative breast cancer (TNBC) patients. The ratio and mammosphere-forming ability of CD44+/CD24- stem-like cells were tested. The role of LIPH in breast cancer cell migration and invasion was also evaluated. In addition, the effect of LIPH silencing on mitochondrial respiration was determined using the Seahorse assay. Finally, the effect of LIPH silencing on protein expression was determined via tandem mass tag-based spectrometry and Western blotting. We found that LIPH expression was associated with metastasis in lymph nodes and distant organs (P = 0.025), resulting in poor survival among breast cancer patients (P = 0.027). LIPH knockdown significantly decreased both the ratio of CD44+ /CD24- stem-like cells and their mammosphere-forming ability. LIPH silencing promoted apoptosis, arrested cell cycle in the G2/M phase, mitigated the oxidation-related oxygen consumption rate in the mitochondria, and reduced metabolism. LIPH inhibited adhesion between tumour cells and enhanced the epithelial-mesenchymal transition. Tandem mass spectrometric analysis presented 68 proteins were differentially expressed in LIPH-silenced cells and LIPH-mediated modulation of tumour cell adhesion depended on integrin-related CAPN2 and paxillin signalling. Overall, our findings provided strong evidence that LIPH up-regulation promoted metastasis and the stemness of TNBC cells. Therefore, targeting LIPH is a potentially viable strategy for preventing metastasis in TNBC.


Lipase/genetics , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Neoplastic Stem Cells/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Adolescent , Adult , Aged , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , G2 Phase/genetics , Humans , Hyaluronan Receptors/genetics , Middle Aged , Oxygen Consumption/genetics , Young Adult
19.
PLoS Genet ; 16(6): e1008905, 2020 06.
Article En | MEDLINE | ID: mdl-32569318

Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific 'licensing' of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1, and Rec8). Inactivating RNAPII-dependent transcription/Orc1 does not lead to effects on the chromosomal abundance of Hop1, a known chromosomal client of Pch2, suggesting a complex relationship between SC formation, Pch2 recruitment and Hop1 chromosomal association. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription.


Nuclear Proteins/metabolism , Origin Recognition Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Synaptonemal Complex/metabolism , Transcription, Genetic , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Chromosomes, Fungal/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , G2 Phase/genetics , Mutation , Nuclear Proteins/genetics , Origin Recognition Complex/genetics , RNA Polymerase II/metabolism , RNA-Seq , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Synaptonemal Complex/genetics
20.
Med Sci Monit ; 26: e922217, 2020 Jun 27.
Article En | MEDLINE | ID: mdl-32591494

BACKGROUND Rab7 belongs to the Ras oncogene family. Many studies have shown that its dysfunction is associated with many types of malignant tumors, but its effect on the pathogenesis of gastric cancer (GC) is still unknown. Therefore, we investigated the effect and mechanism of Rab7 in GC. MATERIAL AND METHODS The expression of Rab7 in GC and adjacent tissues was detected by immunohistochemistry, Western blot analysis, and qRT-PCR. The relationship of Rab7 with clinicopathological parameters and prognosis was analyzed. The expressions of Rab7, PI3K, and AKT in GC cells were assessed by Western blot. Overexpressed and silenced GC cell lines were constructed and AGS cells were treated with LY294002. The proliferation capacity of GC cells was detected by CCK8 assay, cell cycle changes were detected by flow cytometry, and the invasion and migration abilities of GC cells were assessed by transwell assay. RESULTS The expression of Rab7 was upregulated in the samples and cells, and was positively correlated with lymph node metastasis but negatively correlated with histological differentiation and clinical prognosis. In cell function experiments, overexpression of Rab7 induced the transition from S phase to G2 phase and promoted the proliferation, invasion, and migration of GC cells. Our assessment of the molecular mechanism showed that Rab7 promoted the phosphorylation of PI3K and AKT in GC cells. Incubation with the PI3K inhibitor Ly294002 impaired the enhanced effect of Rab7 overexpression on proliferation, migration, and invasion abilities of GC cells. These results show that the Rab7 affects GC cell progression by modulating the PI3K/AKT pathway. CONCLUSIONS Rab7 could be a prognostic biomarker and therapeutic target of the PI3K/AKT pathway in GC.


Carcinoma/genetics , Cell Proliferation/genetics , Stomach Neoplasms/genetics , rab GTP-Binding Proteins/genetics , Carcinoma/metabolism , Carcinoma/pathology , Cell Cycle , Cell Line, Tumor , Cell Movement/genetics , Female , G2 Phase/genetics , Humans , Lymph Nodes/pathology , Male , Middle Aged , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , S Phase/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Up-Regulation , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
...