Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.149
Filter
1.
Commun Biol ; 7(1): 802, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956302

ABSTRACT

G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent ß-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein ßγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of ß-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gßγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated ß-arrestin2 recruitment to activated receptors. This was independent of the source of free Gßγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, ß-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gßγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of ß-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gßγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.


Subject(s)
G-Protein-Coupled Receptor Kinases , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Humans , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , G-Protein-Coupled Receptor Kinases/metabolism , G-Protein-Coupled Receptor Kinases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Phosphorylation , Animals , Signal Transduction
2.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972875

ABSTRACT

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Subject(s)
Endosomes , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Protein Transport , Receptors, Vasopressin , beta-Arrestins , Humans , beta-Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Signal Transduction
3.
PLoS Biol ; 22(7): e3002716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008526

ABSTRACT

Heterologous sensitization of adenylyl cyclase (AC) results in elevated cAMP signaling transduction that contributes to drug dependence. Inhibiting cullin3-RING ligases by blocking the neddylation of cullin3 abolishes heterologous sensitization, however, the modulating mechanism remains uncharted. Here, we report an essential role of the potassium channel tetramerization domain (KCTD) protein 2, 5, and 17, especially the dominant isoform KCTD5 in regulating heterologous sensitization of AC1 and morphine dependence via working with cullin3 and the cullin-associated and neddylation-dissociated 1 (CAND1) protein. In cellular models, we observed enhanced association of KCTD5 with Gß and cullin3, along with elevated dissociation of Gß from AC1 as well as of CAND1 from cullin3 in heterologous sensitization of AC1. Given binding of CAND1 inhibits the neddylation of cullin3, we further elucidated that the enhanced interaction of KCTD5 with both Gß and cullin3 promoted the dissociation of CAND1 from cullin3, attenuated the inhibitory effect of CAND1 on cullin3 neddylation, ultimately resulted in heterologous sensitization of AC1. The paraventricular thalamic nucleus (PVT) plays an important role in mediating morphine dependence. Through pharmacological and biochemical approaches, we then demonstrated that KCTD5/cullin3 regulates morphine dependence via modulating heterologous sensitization of AC, likely AC1 in PVT in mice. In summary, the present study revealed the underlying mechanism of heterologous sensitization of AC1 mediated by cullin3 and discovered the role of KCTD proteins in regulating morphine dependence in mice.


Subject(s)
Adenylyl Cyclases , Cullin Proteins , Morphine Dependence , Animals , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cullin Proteins/metabolism , Mice , Morphine Dependence/metabolism , HEK293 Cells , Humans , Potassium Channels/metabolism , Potassium Channels/genetics , Mice, Inbred C57BL , Male , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , Morphine/pharmacology , Mice, Knockout , Signal Transduction , Cyclic AMP/metabolism
4.
BMC Plant Biol ; 24(1): 586, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902609

ABSTRACT

BACKGROUND: Plant heterotrimeric G proteins respond to various environmental stresses, including high salinity. It is known that Gß subunit AGB1 functions in maintaining local and systemic Na+/K+ homeostasis to accommodate ionic toxicity under salt stress. However, whether AGB1 contributes to regulating gene expression for seedling's survival under high salinity remains unclear. RESULTS: We showed that AGB1-Venus localized to nuclei when facing excessive salt, and the induction of a set of bZIP17-dependent salt stress-responsive genes was reduced in the agb1 mutant. We confirmed both genetic and physical interactions of AGB1 and bZIP17 in plant salinity response by comparing salt responses in the single and double mutants of agb1 and bzip17 and by BiFC assay, respectively. In addition, we show that AGB1 depletion decreases nuclei-localization of transgenic mRFP-bZIP17 under salt stress, as shown in s1p s2p double mutant in the Agrobacteria-mediated transient mRFP-bZIP17 expression in young seedlings. CONCLUSIONS: Our results indicate that AGB1 functions in S1P and/or S2P-mediated proteolytic processing of bZIP17 under salt stress to regulate the induction of salinity-responsive gene expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , GTP-Binding Protein beta Subunits , Salinity , Unfolded Protein Response , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Salt Stress , Gene Expression Regulation, Plant , Seedlings/genetics , Seedlings/physiology , Seedlings/metabolism
5.
Biochim Biophys Acta Biomembr ; 1866(6): 184337, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763272

ABSTRACT

Ca2+ influx through Cav3.3 T-type channel plays crucial roles in neuronal excitability and is subject to regulation by various signaling molecules. However, our understanding of the partners of Cav3.3 and the related regulatory pathways remains largely limited. To address this quest, we employed the rat Cav3.3 C-terminus as bait in yeast-two-hybrid screenings of a cDNA library, identifying rat Gß2 as an interaction partner. Subsequent assays revealed that the interaction of Gß2 subunit was specific to the Cav3.3 C-terminus. Through systematic dissection of the C-terminus, we pinpointed a 22 amino acid sequence (amino acids 1789-1810) as the Gß2 interaction site. Coexpression studies of rat Cav3.3 with various Gßγ compositions were conducted in HEK-293 cells. Patch clamp recordings revealed that coexpression of Gß2γ2 reduced Cav3.3 current density and accelerated inactivation kinetics. Interestingly, the effects were not unique to Gß2γ2, but were mimicked by Gß2 alone as well as other Gßγ dimers, with similar potencies. Deletion of the Gß2 interaction site abolished the effects of Gß2γ2. Importantly, these Gß2 effects were reproduced in human Cav3.3. Overall, our findings provide evidence that Gß(γ) complexes inhibit Cav3.3 channel activity and accelerate the inactivation kinetics through the Gß interaction with the Cav3.3 C-terminus.


Subject(s)
Calcium Channels, T-Type , GTP-Binding Protein beta Subunits , Animals , Humans , Rats , Calcium Channels, R-Type , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/chemistry , Cation Transport Proteins , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/chemistry , HEK293 Cells , Kinetics , Patch-Clamp Techniques , Protein Binding
6.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713746

ABSTRACT

Phosphoinositide 3-kinase (PI3K) beta (PI3Kß) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kß prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kß localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kß when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kß membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kß prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GßGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kß to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GßGγ or pY/Rac1(GTP), PI3Kß activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kß is synergistically activated by pY/GßGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , rac1 GTP-Binding Protein , rho GTP-Binding Proteins , Humans , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , Microscopy, Fluorescence , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/chemistry , Signal Transduction , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/metabolism , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/metabolism
7.
Mol Pharmacol ; 106(1): 47-55, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38769020

ABSTRACT

Opioid analgesics are widely used as a treatment option for pain management and relief. However, the misuse of opioid analgesics has contributed to the current opioid epidemic in the United States. Prescribed opioids such as morphine, codeine, oxycodone, and fentanyl are mu-opioid receptor (MOR) agonists primarily used in the clinic to treat pain or during medical procedures, but development of tolerance limits their utility for treatment of chronic pain. Here we explored the effects of biasing Gßγ signaling on tolerance development after chronic morphine treatment in vivo. We hypothesized that biasing Gßγ signaling with gallein could prevent activation of regulatory signaling pathways that result in tolerance to antinociceptive effects of MOR agonists. Gallein has been shown to bind to Gßγ and inhibit interactions of Gßγ with phospholipase-Cß3 (PLCß3) or G-protein-coupled receptor kinase 2 (GRK2) but not G-protein inwardly rectifying potassium (GIRK) channels. In mice, morphine-induced antinociception was evaluated in the 55°C warm water tail withdrawal assay. We used two paradigms for gallein treatment: administration during and after three times-daily morphine administration. Our results show that gallein cotreatment during repeated administration of morphine decreased opioid tolerance development and that gallein treatment in an opioid-tolerant state enhanced the potency of morphine. Mechanistically, our data suggest that PLCß3 is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. These studies demonstrate that small molecules that target Gßγ signaling could reduce the need for large doses of opioid analgesics to treat pain by producing an opioid-sparing effect. SIGNIFICANCE STATEMENT: Biasing Gßγ signaling prevents tolerance to repeated morphine administration in vivo and potentiates the antinociceptive effects of morphine in an opioid-tolerant state. Mechanistically, phospholipase-Cß is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. This study identifies a novel treatment strategy to decrease the development of tolerance to the analgesic effects of mu-opioid receptor agonists, which are necessary to improve pain treatment and decrease the incidence of opioid use disorder.


Subject(s)
Analgesics, Opioid , Drug Tolerance , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Mice, Inbred C57BL , Morphine , Nociception , Signal Transduction , Animals , Morphine/pharmacology , Drug Tolerance/physiology , Signal Transduction/drug effects , Mice , GTP-Binding Protein beta Subunits/metabolism , Male , Analgesics, Opioid/pharmacology , GTP-Binding Protein gamma Subunits/metabolism , Nociception/drug effects , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/agonists , Phospholipase C beta/metabolism , Xanthenes
8.
Stem Cell Res ; 78: 103446, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776645

ABSTRACT

The heterozygous mutation c.155G > T in GNB2 clinically leads to sinus bradycardia and sinus node dysfunction. Here, patient-specific skin fibroblasts of the mutation carrier were used for Sendai virus reprogramming into human induced-pluripotent stem cells (hiPSC). For generating the isogenic control cell line, a CRISPR/Cas9-mediated HDR-repair of the hiPSCs was carried out. Both generated cell lines (GNB2 SV5528, GNB2 K26) maintained a normal karyotype, cell morphology, pluripotency in immunofluoresence and RT-qPCR analysis. Both hiPSC-lines showed differentiation potential into all three germ layers. Differentiated cardiomyocytes of this isogenic set may pave the way for investigating pharmacological rescue strategies for sinus node dysfunction.


Subject(s)
CRISPR-Cas Systems , Induced Pluripotent Stem Cells , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems/genetics , Heterozygote , Cell Line , Cell Differentiation , Sick Sinus Syndrome/genetics , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
9.
Br J Pharmacol ; 181(15): 2478-2491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583945

ABSTRACT

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is a potent vasodilator. While its signalling is assumed to be mediated via increases in cAMP, this study focused on elucidating the actual intracellular signalling pathways involved in CGRP-induced relaxation of human isolated coronary arteries (HCA). EXPERIMENTAL APPROACH: HCA were obtained from heart valve donors (27 M, 25 F, age 54 ± 2 years). Concentration-response curves to human α-CGRP or forskolin were constructed in HCA segments, incubated with different inhibitors of intracellular signalling pathways, and intracellular cAMP levels were measured with and without stimulation. RESULTS: Adenylyl cyclase (AC) inhibitors SQ22536 + DDA and MDL-12330A, and PKA inhibitors Rp-8-Br-cAMPs and H89, did not inhibit CGRP-induced relaxation of HCA, nor did the guanylyl cyclase inhibitor ODQ, PKG inhibitor KT5823, EPAC1/2 inhibitor ESI09, potassium channel blockers TRAM-34 + apamin, iberiotoxin or glibenclamide, or the Gαq inhibitor YM-254890. Phosphodiesterase inhibitors induced a concentration-dependent decrease in the response to KCl but did not potentiate relaxation to CGRP. Relaxation to forskolin was not blocked by PKA or AC inhibitors, although AC inhibitors significantly inhibited the increase in cAMP. Inhibition of Gßγ subunits using gallein significantly inhibited the relaxation to CGRP in human coronary arteries. CONCLUSION: While CGRP signalling is generally assumed to act via cAMP, the CGRP-induced vasodilation in HCA was not inhibited by targeting this intracellular signalling pathway at different levels. Instead, inhibition of Gßγ subunits did inhibit the relaxation to CGRP, suggesting a different mechanism of CGRP-induced relaxation than generally believed.


Subject(s)
Calcitonin Gene-Related Peptide , Coronary Vessels , Cyclic AMP , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Vasodilation , Humans , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Coronary Vessels/physiology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Male , Middle Aged , Cyclic AMP/metabolism , Vasodilation/drug effects , Female , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , Signal Transduction/drug effects , In Vitro Techniques , Vasodilator Agents/pharmacology
10.
Clin Obes ; 14(4): e12661, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38596856

ABSTRACT

Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.


Subject(s)
GTP-Binding Protein beta Subunits , Haploinsufficiency , Obesity , Humans , Male , Female , GTP-Binding Protein beta Subunits/genetics , Obesity/genetics , Child , Intellectual Disability/genetics , Child, Preschool , Phenotype , Adolescent , Hyperphagia/genetics , Adult
11.
Nat Struct Mol Biol ; 31(8): 1189-1197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38589608

ABSTRACT

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gßγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gßγ and a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gßγ and show reduced conditional activation by Gßγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.


Subject(s)
Adenylyl Cyclases , Cryoelectron Microscopy , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/chemistry , Humans , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/chemistry , Models, Molecular , HEK293 Cells , Protein Multimerization , Protein Binding , Animals , Mutation , Protein Conformation
12.
Nat Struct Mol Biol ; 31(8): 1198-1207, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38565696

ABSTRACT

The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gßγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gßγ complexes in the presence of substrates/analogs, revealing two Gßγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gßγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gßγ binding sites and interdomain contacts altered by Gßγ binding suggest that Gßγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gßγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Cryoelectron Microscopy , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Animals , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Humans , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/chemistry , Binding Sites , Zebrafish , Protein Binding , Neutrophils/metabolism , Models, Molecular , Enzyme Activation , Protein Conformation , Allosteric Regulation
13.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658148

ABSTRACT

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Subject(s)
Disease Resistance , Gene Silencing , Glycine max , Plant Diseases , Glycine max/genetics , Glycine max/immunology , Glycine max/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Comovirus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Gene Expression Regulation, Plant , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/immunology , Xanthomonas , Reactive Oxygen Species/metabolism
14.
Medicina (Kaunas) ; 60(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38674235

ABSTRACT

GNB1 encephalopathy is a rare genetic disease caused by pathogenic variants in the G Protein Subunit Beta 1 (GNB1) gene, with only around 68 cases documented worldwide. Although most cases had been caused by de novo germline mutations, in this case, the pathogenic variant was inherited from patient's mother, indicating an autosomal dominant inheritance pattern. The patient presented at 25 years of age with mild developmental delay and cognitive impairment, prominent generalized dystonia, and horizontal nystagmus which are all characterizing symptoms of GNB1 encephalopathy. Electroencephalography (EEG) showed no epileptiform patterns, and magnetic resonance imaging (MRI) revealed hypointensities in globus pallidus and dentate nucleus areas. The main theory for GNB1 encephalopathy pathogenesis is neuronal hyperexcitability caused by impaired ion channel regulation. Due to low specificity of symptoms, diagnosis relies on genetic testing. As there are no standardized GNB1 encephalopathy treatment guidelines, evaluation of different treatment options is based on anecdotal cases. Reviewing different treatment options, deep brain stimulation and intrathecal baclofen pump, as well as some other medications still in preclinical trials, seem to be the most promising.


Subject(s)
GTP-Binding Protein beta Subunits , Humans , GTP-Binding Protein beta Subunits/genetics , Adult , Brain Diseases/genetics , Brain Diseases/diagnosis , Brain Diseases/diagnostic imaging , Electroencephalography/methods , Female , Magnetic Resonance Imaging/methods , Male
15.
Am J Hum Genet ; 111(3): 473-486, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38354736

ABSTRACT

Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.


Subject(s)
Alzheimer Disease , GTP-Binding Protein beta Subunits , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Genome-Wide Association Study , Neurofibrillary Tangles/metabolism , Phenotype , Genomics , Amyloid beta-Peptides/genetics , Brain/metabolism , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
16.
J Exp Bot ; 75(5): 1615-1632, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37988280

ABSTRACT

Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , GTP-Binding Protein beta Subunits , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , Phosphorylation
17.
Clin Genet ; 105(3): 340-342, 2024 03.
Article in English | MEDLINE | ID: mdl-37994112

ABSTRACT

We studied a patient with a severe phenotype carrying two GNB5 variants: c.514delT from the unaffected heterozygous mother and c.628-6G>A from the unaffected homozygous father. Functional genomics studies showed that parents express 50% (nonsense-mediated decay, NMD) of the RNA/protein while the patient does not produce enough protein for normal development.


Subject(s)
GTP-Binding Protein beta Subunits , RNA , Female , Humans , Alleles , RNA, Messenger/genetics , Mothers , Genomics , Nonsense Mediated mRNA Decay , GTP-Binding Protein beta Subunits/genetics
18.
Epigenetics ; 19(1): 2299044, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38154055

ABSTRACT

Early detection of hepatocellular carcinoma (HCC) can greatly improve the survival rate of patients. We aimed to develop a novel marker panel based on cell-free DNA (cfDNA) methylation for the detection of HCC. The differentially methylated CpG sites (DMCs) specific for HCC blood diagnosis were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, then validated by the whole genome bisulphite sequencing (WGBS) of 12 paired HCC and paracancerous tissues. The clinical performance of the panel was evaluated using tissue samples [32 HCC, chronic liver disease (CLD), and healthy individuals] and plasma cohorts (173 HCC, 199 CLD, and 98 healthy individuals). The combination of G protein subunit beta 4 (GNB4) and Riplet had the optimal area under the curve (AUC) in seven candidates through TCGA, GEO, and WGBS analyses. In tissue validation, the GNB4 and Riplet showed an AUC of 100% with a sensitivity and specificity of 100% for detecting any-stage HCC. In plasma, it demonstrated a high sensitivity of 84.39% at 91.92% specificity, with an AUC of 92.51% for detecting any-stage HCC. The dual-marker panel had a higher sensitivity of 78.26% for stage I HCC than alpha-fetoprotein (AFP) of 47.83%, and a high sensitivity of 70.27% for detecting a single tumour (size ≤3 cm). In conclusion, we developed a novel dual-marker panel that demonstrates high accuracy in detecting HCC, surpassing the performance of AFP testing.


Subject(s)
Carcinoma, Hepatocellular , GTP-Binding Protein beta Subunits , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , alpha-Fetoproteins/analysis , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Biomarkers, Tumor/metabolism , DNA Methylation , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
20.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37561580

ABSTRACT

Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gßγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gßγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gßγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gßγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gßγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.


Subject(s)
GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Insulins , Mice , Animals , Calcium/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Exocytosis/physiology , SNARE Proteins/genetics , Diet , Obesity/genetics , Adipocytes/metabolism , Insulins/metabolism , Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL