Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 755
Filter
1.
BMC Infect Dis ; 24(1): 709, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030491

ABSTRACT

BACKGROUND: Camostat mesylate, an oral serine protease inhibitor, is a powerful TMPRSS2 inhibitor and has been reported as a possible antiviral treatment against COVID-19. Therefore, we aim to assess the safety and efficacy of camostat mesylate for COVID-19 treatment. METHODS: A systematic review and meta-analysis synthesizing randomized controlled trials from PubMed, Scopus, Embase, Cochrane, Web of Science, clinical trials.gov, and medrxiv until June 2023. The outcomes were pooled using Mean difference (MD) for continuous outcomes and risk ratio (RR) for dichotomous outcomes. The protocol is registered in PROSPERO with ID CRD42023439633. RESULTS: Nine RCTs, including 1,623 patients, were included in this analysis. There was no difference between camostat mesylate and placebo in producing negative PCR test results at 1-7 days (RR: 0.76, 95% CI: [0.54, 1.06] P = 0.1), 8-14 days (RR: 1.02, 95% CI: [0.84, 1.23] P = 0.87), or 15-21 days (RR: 0.99, 95% CI: [0.82, 1.19] P = 0.90); clinical resolution of symptoms at 1-7 days (RR: 0.94 (95% CI: 0.58, 1.53) P = 0.81), 8-14 days (RR: 0.91, 95% CI: [0.74, 1.11] P = 0.33, ), or 15-21 days (RR: 0.77, 95% CI: [0.40, 1.51] P = 0.45); and time to symptom improvement (MD:-0.38 weeks (95% CI: [-1.42, 0.66] P = 0.47, I2 = 85%). CONCLUSION: Camostat mesylate did not improve clinical outcomes in patients with COVID-19, compared to placebo.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Guanidines , Randomized Controlled Trials as Topic , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Guanidines/therapeutic use , Guanidines/adverse effects , Treatment Outcome , COVID-19 , Gabexate/therapeutic use , Serine Proteinase Inhibitors/therapeutic use , Serine Proteinase Inhibitors/adverse effects , Esters
2.
J Med Virol ; 96(6): e29712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808555

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.


Subject(s)
Membrane Proteins , Serine Endopeptidases , Virus Internalization , Animals , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Swine , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Alphacoronavirus/genetics , Alphacoronavirus/physiology , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Gabexate/analogs & derivatives , Gabexate/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , HEK293 Cells , Cell Line , Chlorocebus aethiops , Swine Diseases/virology , Esters , Guanidines
3.
Clin Microbiol Infect ; 30(6): 743-754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331253

ABSTRACT

BACKGROUND: Synthetic serine protease inhibitors block the cellular enzyme transmembrane protease serine 2, thus preventing SARS-CoV-2 cell entry. There are two relevant drugs in this class, namely, nafamostat (intravenous formulation) and camostat (oral formulation). OBJECTIVE: To determine whether transmembrane protease serine 2 inhibition with nafamostat or camostat is associated with a reduced risk of 30-day all-cause mortality in adults with COVID-19. DATA SOURCES: Scientific databases and clinical trial registry platforms. STUDY ELIGIBILITY CRITERIA, INTERVENTIONS, AND PARTICIPANTS: Preprints or published randomized clinical trials (RCTs) of nafamostat or camostat vs. usual care or placebo in adults requiring treatment for COVID-19. METHODS OF DATA SYNTHESIS AND RISK-OF-BIAS ASSESSMENT: The primary outcome of the meta-analysis was 30-day all-cause mortality. Secondary outcomes included time to recovery, adverse events, and serious adverse events. Risk of bias (RoB) was assessed using the revised Cochrane RoB 2 tool for individually randomized trials. Meta-analysis was conducted in the R package meta (v7.0-0) using inverse variance and random effects. Protocol registration number was INPLASY202320120. RESULTS: Twelve RCTs were included. Overall, the number of available patients was small (nafamostat = 387; camostat = 1061), the number of enrolled patients meeting the primary outcome was low (nafamostat = 12; camostat = 13), and heterogeneity was high. In hospitalized adults, we did not identify differences in 30-day all-cause mortality (risk ratio [95% CI]: 0.58 [0.19, 1.80], p 0.34; I2 = 0%; n = 6) and time to recovery (mean difference [95% CI]: 0.08 days [-0.74, 0.89], p 0.86; n = 2) between nafamostat vs. usual care; and for 30-day all-cause mortality (risk ratio [95% CI]: 0.99 [0.31, 3.18], p 0.99; n = 2) between camostat vs. placebo. CONCLUSION: The RCT evidence is inconclusive to determine whether there is a mortality reduction and safety with either nafamostat or camostat for the treatment of adults with COVID-19. There were high RoB, small sample size, and high heterogeneity between RCTs.


Subject(s)
Benzamidines , COVID-19 Drug Treatment , Guanidines , Randomized Controlled Trials as Topic , SARS-CoV-2 , Serine Endopeptidases , Serine Proteinase Inhibitors , Adult , Humans , Benzamidines/therapeutic use , COVID-19/mortality , Esters , Gabexate/therapeutic use , Gabexate/analogs & derivatives , Guanidines/therapeutic use , SARS-CoV-2/drug effects , Serine Proteinase Inhibitors/therapeutic use , Serine Proteinase Inhibitors/adverse effects , Treatment Outcome
4.
Pancreatology ; 23(8): 904-910, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839921

ABSTRACT

BACKGROUND: While the use of protease inhibitor gabexate mesylate (GM) is still controversial in acute pancreatitis, it has never been tested for postpancreatectomy acute pancreatitis (PPAP). This study aims to assess the impact of GM on postoperative serum hyperamylasaemia (POH) or PPAP after pancreatoduodenectomy (PD). METHODS: Consecutive patients developing POH after PD between 2016 and 2021 were included. According to GM administration, patients were divided into GM-treated and control (CTR) groups. GM was administered from postoperative day 1-3 in POH patients who underwent surgery before 2017. A 2:1 propensity matching was used to minimize the risk of bias. RESULTS: Overall, 264 patients with POH were stratified in the GM (59 patients) and CTR (104 patients) cohorts, which showed balanced baseline characteristics after matching. No difference in postoperative complications was observed between the groups (all p > 0.05), except for PPAP occurrence, which was significantly higher in the GM group (37% vs. 22%, p = 0.037). A total of 45 patients (28%) evolved to PPAP. Comparing PPAP patients in the GM and CTR groups, no significant differences in POPF, relaparotomy, and mortality (all p > 0.09) were found. No difference in intravenous crystalloid administration was found in patients with PPAP, whether or not they developed major complications or pancreatic fistula (p > 0.05) CONCLUSION: Protease inhibitor seems ineffective in preventing a PPAP after PD once a POH has occurred. Further studies are needed to achieve benchmarks for treating PPAP and identify mitigation strategies to prevent the evolution of POH into additional morbidity.


Subject(s)
Gabexate , Hyperamylasemia , Pancreatitis , Humans , Pancreatitis/etiology , Protease Inhibitors/therapeutic use , Propensity Score , Acute Disease , Gabexate/therapeutic use , Pancreatic Fistula/etiology , Pancreaticoduodenectomy/adverse effects , Hyperamylasemia/etiology , Postoperative Complications/etiology , Retrospective Studies
5.
Sci Rep ; 13(1): 10148, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349360

ABSTRACT

Preserving vascular function is crucial for preventing multiorgan failure and death in ischemic and low-pressure states such as trauma/hemorrhagic shock (T/HS). It has recently been reported that inhibiting circulating proteases released from the bowel to the circulation during T/HS may preserve vascular function and improve outcomes following T/HS. This study aimed to evaluate the role of the serine protease inhibitor gabexate mesilate (GM) in preserving vascular function during T/HS when given enterally. We studied the vascular reactivity of mesenteric arteries from male Wistar rats treated with enteral GM (10 mg/kg) (GM-treated, n = 6) or control (Shock-control, n = 6) following (T/HS) using pressure myography. Concentration-response curves of endothelial-dependent and endothelial-independent agonists (e.g., acetylcholine, sodium nitroprusside) ranging from 10-10 to 10-5 M were performed. In a second set of experiments, ex-vivo arteries from healthy rats were perfused with plasma from shocked animals from both groups and vascular performance was similarly measured. Arteries from the GM-treated group demonstrated a preserved concentration-response curve to the α1 adrenergic agonist phenylephrine compared to arteries from Shock-control animals (- logEC50: - 5.73 ± 0.25 vs. - 6.48 ± 0.2, Shock-control vs. GM-treated, p = 0.04). When perfused with plasma from GM-treated rats, healthy arteries exhibited an even greater constriction and sensitivity to phenylephrine (- logEC50: - 6.62 ± 0.21 vs. - 7.13 ± 0.21, Shock-control vs. GM-treated, p = 0.02). Enteral GM also preserved the endothelium-dependent vascular response to agonists following T/HS and limited syndecan-1 shedding as a marker of glycocalyx compromise (41.84 ± 9 vs. 17.63 ± 3.97 ng/mL, Shock-control vs. GM-treated, p = 0.02). Syndecan-1 cleavage was correlated with plasma trypsin-like activity (r2 = 0.9611). Enteral gabexate mesilate was able to maintain vascular function in experimental T/HS, which was reflected by improved hemodynamics (mean arterial pressure 50.39 ± 7.91 vs. 64.95 ± 3.43 mmHg, Shock-control vs. GM treated, p = 0.0001). Enteral serine protease inhibition may be a potential therapeutic intervention in the treatment of T/HS.


Subject(s)
Shock, Hemorrhagic , Gabexate/pharmacology , Gabexate/therapeutic use , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/enzymology , Endothelium/drug effects , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Rats, Wistar , Male , Animals , Rats
6.
Protein J ; 42(4): 343-354, 2023 08.
Article in English | MEDLINE | ID: mdl-37093417

ABSTRACT

In many bacteria, the High Temperature requirement A (HtrA) protein functions as a chaperone and protease. HtrA is an important factor in stress tolerance and plays a significant role in the virulence of several pathogenic bacteria. Camostat, gabexate and nafamostat mesylates are serine protease inhibitors and have recently shown a great impact in the inhibition studies of SARS-CoV2. In this study, the inhibition of Listeria monocytogenes HtrA (LmHtrA) protease activity was analysed using these three inhibitors. The cleavage assay, using human fibrinogen and casein as substrates, revealed that the three inhibitors effectively inhibit the protease activity of LmHtrA. The agar plate assay and spectrophotometric analysis concluded that the inhibition of nafamostat (IC50 value of 6.6 ± 0.4 µM) is more effective compared to the other two inhibitors. Previous studies revealed that at the active site of the protease, these inhibitors are hydrolysed and one of the hydrolysates is covalently bound to the active site serine. To understand the mode of binding of these inhibitors at the active site of LmHtrA, docking of the inhibitors followed by molecular dynamics simulations were carried out. Analysis of the LmHtrA-inhibitor complex structures revealed that the covalently bound inhibitor is unable to occupy the S1 pocket of the LmHtrA which is in contrast to the previously determined camostat and nafamostat complex structures. This observation provides the first glimpse of the substrate specificity of LmHtrA which is not known. The obtained results also suggest that the development of novel inhibitors of LmHtrA and its homologs with active site architecture similar to LmHtrA can be pursued with suitable modification of these inhibitors. To date, only a very few studies have been carried out on identifying the inhibitors of HtrA proteolytic activity.


Subject(s)
COVID-19 , Gabexate , Listeria monocytogenes , Humans , Gabexate/pharmacology , Peptide Hydrolases , RNA, Viral , SARS-CoV-2 , Mesylates , Protease Inhibitors/pharmacology
7.
Int J Clin Oncol ; 28(5): 613-624, 2023 May.
Article in English | MEDLINE | ID: mdl-36961615

ABSTRACT

Prof. Setsuro Fujii achieved significant results in the field of drug discovery research in Japan. He developed nine well-known drugs: FT, UFT, S-1 and FTD/TPI are anticancer drugs, while cetraxate hydrochloride, camostat mesilate, nafamostat mesilate, gabexate mesilate and pravastatin sodium are therapeutic drugs for various other diseases. He delivered hope to patients with various diseases across the world to improve their condition. Even now, drug discovery research based on Dr. Fujii's ideas is continuing.


Subject(s)
Antineoplastic Agents , Gabexate , Male , Humans , Pyrimidines , Gabexate/therapeutic use , Antineoplastic Agents/therapeutic use , Tegafur/therapeutic use , Japan , Uracil
8.
Eur J Pharmacol ; 938: 175394, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36403685

ABSTRACT

Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 µM, 2.4 ± 0.3 µM and 0.40 ± 0.09 µM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.


Subject(s)
Acid Sensing Ion Channels , Gabexate , Animals , Rats , Acid Sensing Ion Channels/metabolism , Diminazene/pharmacology , Guanidines/pharmacology , Hydrogen-Ion Concentration
9.
Dig Dis Sci ; 68(1): 138-146, 2023 01.
Article in English | MEDLINE | ID: mdl-35451710

ABSTRACT

BACKGROUND AND AIMS: We have previously shown that gabexate mesylate-poloxamer 407 conjugate (GMTI) alleviates traumatic pancreatitis in rats. In this study, we evaluated the therapeutic effect of GMTI on sodium taurocholate-induced severe acute pancreatitis (SAP) in an optimized rat model. METHODS: An SAP rat model was established via microinjection of 3.5% sodium taurocholate and retention in the bile duct for 1 min. SAP rats were administered GMTI via tail vein injection (i.v.) or tail vein injection + intraperitoneal injection (i.v. + i.p.). All rats were sacrificed at 12 h after treatment. Biochemical approach and enzyme-linked immunosorbent assay were performed to measure the serum levels of amylase (AMY), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Hematoxylin and eosin staining and TUNEL assay were conducted to examine histopathology and acinar cell apoptosis in the rat pancreas. RESULTS: SAP was successfully induced in all model rats, as evidenced by progressively aggravating SAP symptoms and signs, pancreatic histopathological abnormalities, as well as elevated serum levels of TNF-α, IL-6, and AMY. The mortality rates at 1 h, 6 h, and 12 h were 0%, 0%, and 25%, respectively. GMTI therapy via i.v. or i.v. + i.p. significantly reduced pancreatic wet weights, ascites amounts, pathological scores, and circulating levels of TNF-α and IL-6 while promoting acinar cell apoptosis in SAP rats. GMTI therapy via i.v. + i.p. outperformed i.v. in improving pancreatic histology and reducing TNF-α and IL-6 serum levels in SAP rats. CONCLUSIONS: Our optimized SAP rat model is reliable and reproducible. GMTI therapy is a promising approach against SAP.


Subject(s)
Gabexate , Pancreatitis , Rats , Animals , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/pathology , Gabexate/adverse effects , Poloxamer/pharmacology , Interleukin-6 , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Taurocholic Acid , Acute Disease , Pancreas/pathology
10.
Eur J Pharmacol ; 919: 174795, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35122868

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are affected by many pharmaceuticals. In this work, we studied the action of the serine protease inhibitors nafamostat, gabexate and camostat, and an antiprotozoal compound, furamidine, on native NMDA receptors in rat hippocampal pyramidal neurons. Nafamostat, furamidine and gabexate inhibited these receptors with IC50 values of 0.20 ± 0.04, 0.64 ± 0.13 and 16 ± 3 µM, respectively, whereas camostat was ineffective. Nafamostat and furamidine showed voltage-dependent inhibition, while gabexate showed practically voltage-independent inhibition. Nafamostat and furamidine demonstrated tail currents, implying a 'foot-in-the-door' mechanism of action; gabexate did not demonstrate any signs of 'foot-in-the-door' or trapping channel block. Gabexate action was also not competitive, suggesting allosteric inhibition of NMDA receptors. Furamidine and nafamostat are structurally similar to the previously studied diminazene and all three demonstrated a 'foot-in-the-door' mechanism. They have a rather rigid, elongated structures and cannot fold into more compact forms. By contrast, the gabexate molecule can fold, but its folded structure differs drastically from that of typical NMDA receptor blockers, in agreement with its voltage-independent inhibition. These findings provide a better understanding of the structural determinants of NMDA receptor antagonism, while also supporting the potential clinical repurposing of these drugs as neuroprotectors for glaucoma and other neurodegenerative diseases.


Subject(s)
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Animals , Benzamidines/pharmacology , Benzamidines/therapeutic use , Drug Repositioning , Esters/pharmacology , Esters/therapeutic use , Gabexate/pharmacology , Gabexate/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Hippocampus/drug effects , Inhibitory Concentration 50 , Male , Models, Animal , Neurodegenerative Diseases/drug therapy , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Serine Proteinase Inhibitors/therapeutic use
13.
J Formos Med Assoc ; 120(4): 1090-1099, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33183879

ABSTRACT

BACKGROUND/PURPOSE: The evidence provided by syntheses of the preventative effects of gabexate mesilate against pancreatitis among patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) is limited and highly heterogeneous. To enhance the understanding of this topic, this study aimed to provide overview of gabexate mesilate on preventing post ERCP pancreatitis (PEP) by synthesizing all relevant randomized controlled trials (RCTs). METHODS: We searched three databases for relevant RCTs. Two authors independently extracted data of pancreatitis incidence after ERCP, abdominal pain within 48 hours, and hyperamylasemia for quality assessment and meta-analysis. RESULTS: Thirteen RCTs with 3718 patients undergoing ERCP met the eligibility criteria and were included. The results revealed that the use of gabexate mesilate led to lower PEP (Peto odds ratio: 0.66, 95% confidence interval [CI]: 0.49 to 0.89), especially in the subgroup of gabexate mesilate infusion starting more than 30 min (Risk ratio: 0.45, 95% CI: 0.29 to 0.72). CONCLUSION: The present synthesis found that gabexate mesilate could be an option of prophylactic treatment of pancreatitis for patients undergoing ERCP, and reveals that it is favorable to administer it starting 30 min before the ERCP. This evidence may improve the clinical prevention of PEP.


Subject(s)
Cholangiopancreatography, Endoscopic Retrograde , Gabexate , Pancreatitis , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Gabexate/therapeutic use , Humans , Pancreatitis/etiology , Pancreatitis/prevention & control , Randomized Controlled Trials as Topic , Somatostatin
14.
Eur J Pharmacol ; 890: 173720, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33160938

ABSTRACT

COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Amides/pharmacology , Anti-Bacterial Agents/pharmacology , Binding Sites , Drug Repositioning , Esters , Gabexate/analogs & derivatives , Gabexate/pharmacology , Guanidines , Molecular Docking Simulation , Phytochemicals/pharmacology , Protein Binding , Pyrazines/pharmacology , Raltegravir Potassium/pharmacology , Stavudine/pharmacology , Tenofovir/pharmacology , COVID-19 Drug Treatment
15.
Medicine (Baltimore) ; 99(51): e23768, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33371142

ABSTRACT

INTRODUCTION: Prostate adenocarcinoma is the most frequently diagnosed malignancy, particularly for people >70 years old. The main challenge in the treatment of advanced neoplasm is bone metastasis and therapeutic resistance for known oncology drugs. Novel treatment methods to prolong the survival time and improve the life quality of these specific patients are required. The present study attempted to screen potential therapeutic compounds for the tumor through bioinformatics approaches, in order to provide conceptual treatment for this malignant disease. METHODS: Differentially expressed genes were obtained from the Gene Expression Omnibus database and submitted into the Connectivity Map database for the detection of potentially associated compounds. Target genes were extracted from the search results. Functional annotation and pathway enrichment were performed for the confirmation. Survival analysis was used to measure potential therapeutic effects. RESULTS: It was revealed that 3 compounds (vanoxerine, tolnaftate, and gabexate) may help to prolong the disease-free survival time from tumor metastasis of patients with the tumor. A total of 6 genes [also-keto reductase family 1 member C3 (AKR1C3), collagen type III α 1 chain (COL3A1), lipoprotein lipase (LPL), glucuronidase, ß pseudogene 11 (GUSBP11), apolipoprotein E (APOE), and collagen type I α 1 chain (COL1A1)] were identified to be the potential therapeutic targets for the aforementioned compounds. CONCLUSION: In the present study, it was speculated that 3 compounds may function as the potential therapeutic drugs of bone metastatic prostate adenocarcinoma; however, further studies verifying vitro and in vivo are necessary.


Subject(s)
Databases, Genetic , Gene Expression Profiling/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Adult , Collagen Type I, alpha 1 Chain , Computational Biology/methods , Drug Compounding/methods , Gabexate/therapeutic use , Humans , Kaplan-Meier Estimate , Male , Piperazines/therapeutic use , Prostate/pathology , Prostatic Neoplasms/physiopathology , Tolnaftate/therapeutic use
16.
Molecules ; 25(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137894

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), which caused novel corona virus disease-2019 (COVID-19) pandemic, necessitated a global demand for studies related to genes and enzymes of SARS-CoV2. SARS-CoV2 infection depends on the host cell Angiotensin-Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease-2 (TMPRSS2), where the virus uses ACE2 for entry and TMPRSS2 for S protein priming. The TMPRSS2 gene encodes a Transmembrane Protease Serine-2 protein (TMPS2) that belongs to the serine protease family. There is no crystal structure available for TMPS2, therefore, a homology model was required to establish a putative 3D structure for the enzyme. A homology model was constructed using SWISS-MODEL and evaluations were performed through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). Molecular dynamics simulations were employed to investigate the stability of the constructed model. Docking of TMPS2 inhibitors, camostat, nafamostat, gabexate, and sivelestat, using Molecular Operating Environment (MOE) software, into the constructed model was performed and the protein-ligand complexes were subjected to MD simulations and computational binding affinity calculations. These in silico studies determined the tertiary structure of TMPS2 amino acid sequence and predicted how ligands bind to the model, which is important for drug development for the prevention and treatment of COVID-19.


Subject(s)
Betacoronavirus/drug effects , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzamidines , COVID-19 , Coronavirus Infections/drug therapy , Esters , Gabexate/analogs & derivatives , Gabexate/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Guanidines/pharmacology , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protein Structure, Tertiary , SARS-CoV-2 , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Sulfonamides/pharmacology
18.
Rev Med Virol ; 30(5): e2136, 2020 09.
Article in English | MEDLINE | ID: mdl-32644275

ABSTRACT

SARS-CoV-2 has caused a pandemic which is putting strain on the health-care system and global economy. There is much pressure to develop both preventative and curative therapies for SARS-CoV-2 as there is no evidence to support therapies to improve outcomes in patients with SARS-CoV-2. Medications that inhibit certain steps of virus life cycle that are currently used to treat other illnesses such as Malaria, Ebola, HIV and Hepatitis C are being studied for use against SARS-CoV-2. To date, data is limited for medications that facilitate clinical improvement of COVID-19 infections.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Host-Pathogen Interactions/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Progression , Drug Combinations , Drug Repositioning , Esters , Gabexate/analogs & derivatives , Gabexate/therapeutic use , Gene Expression Regulation , Guanidines , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Hydroxychloroquine/therapeutic use , Indoles/therapeutic use , Lopinavir/therapeutic use , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Ritonavir/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532094

ABSTRACT

Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.


Subject(s)
Anticoagulants/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Guanidines/pharmacology , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Benzamidines , Betacoronavirus/metabolism , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Esters , Gabexate/analogs & derivatives , Gabexate/pharmacology , HEK293 Cells , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
20.
Br J Pharmacol ; 177(14): 3147-3161, 2020 07.
Article in English | MEDLINE | ID: mdl-32368792

ABSTRACT

As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antiviral Agents/therapeutic use , Basigin/metabolism , Benzamidines , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Esters , Gabexate/analogs & derivatives , Gabexate/therapeutic use , Genome, Viral , Guanidines/therapeutic use , Humans , Immunization, Passive , Immunosuppressive Agents/therapeutic use , Medicine, Chinese Traditional , Nucleic Acid Synthesis Inhibitors/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Protease Inhibitors/therapeutic use , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines , Virus Internalization , Virus Replication , COVID-19 Drug Treatment , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL