Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.837
Filter
1.
Vet Med Sci ; 10(4): e1519, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952247

ABSTRACT

BACKGROUND: Sarcocystis is a food-borne zoonotic protozoan whose final hosts are humans, dogs, cats, and other carnivores and intermediate hosts are birds and mammals, especially humans and herbivores. Humans become infected by eating raw and undercooked meat contaminated with bradyzoites or by consuming water or food contaminated with the sporocyst stage of the parasite. OBJECTIVES: The aim of this study was to investigate the effects of gamma radiation and electron beam on the survival rate of Sarcocystis bradyzoites in infected beef and to determine the effective dose. METHODS: Three replicates of 100 g of infected meat were treated with different doses (0.5, 1, 1.5 and 2 kGy). As a control, 20 g of contaminated meat was stored separately at 4°C. The viability of the bradyzoites after digestion in pepsin solution was assessed, stained (trypan blue) and unstained, under a stereomicroscope. To assess survival of the bradyzoites, the irradiated meat samples were fed to 30 dogs. After 10 days, faecal samples were examined for sporocysts. RESULTS: The results showed that the highest and lowest mortality rate of Sarcocystis bradyzoites in infected organs using electron beam at a dose of 2 kGy were 92.5% and 100%, respectively, and the lowest mortality rate at a dose of 0.5 kGy were 2.5% and 7.89%, respectively. CONCLUSION: The results of statistical analysis showed that the mortality rate of Sarcocystis bradyzoites was significant between different doses of gamma ray and electron beam, so that gamma rays were better compared to electron beam in destroying Sarcocystis bradyzoites.


Subject(s)
Sarcocystis , Sarcocystis/radiation effects , Sarcocystis/physiology , Animals , Cattle , Sarcocystosis/veterinary , Sarcocystosis/parasitology , Red Meat/parasitology , Gamma Rays , Dogs , Food Irradiation , Dose-Response Relationship, Radiation , Cattle Diseases/parasitology , Electrons
2.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954148

ABSTRACT

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Subject(s)
Brassica , Cellulose , Cucumis sativus , Gamma Rays , Plant Extracts , Brassica/microbiology , Brassica/chemistry , Cellulose/chemistry , Cucumis sativus/microbiology , Cucumis sativus/chemistry , Cucumis sativus/radiation effects , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Food Microbiology , Bacteria/radiation effects , Bacteria/growth & development , Bacteria/isolation & purification , Food Packaging/methods , Food Contamination/analysis , Food Storage , Food Irradiation/methods , Colony Count, Microbial
3.
J Radiol Prot ; 44(2)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38901408

ABSTRACT

During the operation of high energy accelerators activated materials are commonly created. The activity and isotopes present in these materials must be characterised for their clearance and release from the facility, or to ascertain their duration of stay in a radiological storage area. An activity estimate method using a gamma detecting GR-135 survey meter, which has the ability to collect an energy spectrum, is presented. Using several reference radioactive sources the detection efficiency and dead time of the survey meter were characterised. This information combined with the physical properties of the survey meter, the counting time and the properties of the measured photon energy emissions can be used to calculate an accurate activity estimate for localised activation on accelerator components, or loose contamination on isolated waste materials.


Subject(s)
Gamma Rays , Radiation Monitoring , Radioisotopes , Radioisotopes/analysis , Radiation Monitoring/methods , Equipment Design , Spectrometry, Gamma , Radiation Dosage , Particle Accelerators
4.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927049

ABSTRACT

We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte determination. The drying process of the RAPClot™ tube generated minimal effect on the enzymatic activity of the prothrombin activator. According to the bioassays of thrombin activity and plasma clotting, γ-radiation (>25 kGy) resulted in a 30-40% loss of the enzymatic activity of the RAPClot™ tubes. However, a visual blood clotting assay revealed that the γ-radiation-sterilized RAPClot™ tubes showed a high capacity for clotting high-dose heparinized blood (8 U/mL) within 5 min. This was confirmed using Thrombelastography (TEG), indicating full clotting efficiency under anticoagulant conditions. The storage of the RAPClot™ tubes at room temperature (RT) for greater than 12 months resulted in the retention of efficient and effective clotting activity for heparinized blood in 342 s. Furthermore, the enzymatic activity of the RAPClot™ tubes sterilized with an electron-beam (EB) was significantly greater than that with γ-radiation. The EB-sterilized RAPClot™ tubes stored at RT for 251 days retained over 70% enzyme activity and clotted the heparinized blood in 340 s after 682 days. Preliminary clinical studies revealed in the two trials that 5 common analytes (K, Glu, lactate dehydrogenase (LD), Fe, and Phos) or 33 analytes determined in the second study in the γ-sterilized RAPClot™ tubes were similar to those in commercial tubes. In conclusion, the findings indicate that the novel RAPClot™ blood collection prototype tube has a significant advantage over current serum or lithium heparin plasma tubes for routine use in measuring biochemical analytes, confirming a promising application of RAPClot™ in clinical medicine.


Subject(s)
Recombinant Proteins , Humans , Blood Coagulation/drug effects , Serum/chemistry , Serum/metabolism , Thromboplastin/metabolism , Blood Specimen Collection/methods , Thrombelastography/methods , Gamma Rays , Anticoagulants/pharmacology , Anticoagulants/chemistry
5.
Bull Exp Biol Med ; 176(6): 727-730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38904931

ABSTRACT

High doses of ionizing radiation are the risk factor of cognitive dysfunction and anxiety disorders developing in humans and experimental animals. However, the data on the effect of low doses, especially in case of chronic or fractionated exposure, is limited and contradictory. Here we studied the effect of fractionated γ-radiation at cumulative doses of 0.1, 1, and 5 Gy on the parameters of the anxiety-like behavior in neonatal C57BL/6 mice. The anxiety was evaluated using the marble burying test and elevated plus maze. Fractionated irradiation resulted in dose-dependent changes in mouse behavior: the low dose caused an increase in anxiety, wherein the dose raise led to the decrease in anxiety-like behavior indicators compared to non-irradiated animals.


Subject(s)
Animals, Newborn , Anxiety , Behavior, Animal , Dose-Response Relationship, Radiation , Gamma Rays , Mice, Inbred C57BL , Animals , Gamma Rays/adverse effects , Mice , Behavior, Animal/radiation effects , Male , Maze Learning/radiation effects , Dose Fractionation, Radiation , Female
6.
Front Public Health ; 12: 1387330, 2024.
Article in English | MEDLINE | ID: mdl-38841686

ABSTRACT

Background: Owing to the long penetration depth of gamma (γ)-rays, individuals working in ionizing radiation environments are chronically exposed to low-dose γ-radiation, resulting in cognitive changes. Dose rate significantly affects radiation-induced biological effects; however, its role in chronic low-dose γ-irradiation-induced cognitive impairment remains unclear. We aimed to investigate whether chronic low-dose γ-irradiation at low-dose-rate (LDR) could induce cognitive impairment and to compare the cognitive alteration caused by chronic low-dose γ-irradiation at LDR and high-dose-rate (HDR). Methods: The rats were exposed to γ-irradiation at a LDR of 6 mGy/h and a HDR of 20 mGy/h for 30 days (5 h/day). Functional imaging was performed to assess the brain inflammation and blood-brain barrier (BBB) destruction of rats. Histological and immunofluorescence analyses were used to reveal the neuron damage and the activation of microglia and astrocytes in the hippocampus. RNA sequencing was conducted to investigate changes in gene expression in hippocampus. Results: The rats in the LDR group exhibited more persistent cognitive impairment than those in the HDR group. Furthermore, irradiated rats showed brain inflammation and a compromised BBB. Histologically, the number of hippocampal neurons were comparable in the LDR group but were markedly decreased in the HDR. Additionally, activated M1-like microglia and A1-like astrocytes were observed in the hippocampus of rats in the LDR group; however, only M1-like microglia were activated in the HDR group. Mechanistically, the PI3K-Akt signaling pathway contributed to the different cognitive function change between the LDR group and HDR group. Conclusion: Compared with chronic low-dose γ-irradiation at HDR, LDR induced more severe cognitive impairment which might involve PI3K/Akt signaling pathway.


Subject(s)
Cognitive Dysfunction , Gamma Rays , Animals , Gamma Rays/adverse effects , Rats , Cognitive Dysfunction/etiology , Male , Hippocampus/radiation effects , Rats, Sprague-Dawley , Dose-Response Relationship, Radiation , Blood-Brain Barrier/radiation effects
7.
Cancer Med ; 13(12): e7381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888415

ABSTRACT

INTRODUCTION: Therapy-induced senescent cancer and stromal cells secrete cytokines and growth factors to promote tumor progression. Therefore, senescent cells may be novel targets for tumor treatment. Near-infrared photoimmunotherapy (NIR-PIT) is a highly tumor-selective therapy that employs conjugates of a molecular-targeting antibody and photoabsorber. Thus, NIR-PIT has the potential to be applied as a novel senolytic therapy. This study aims to investigate the efficacy of NIR-PIT treatment on senescent cancer and stromal cells. METHODS: Two cancer cell lines (human lung adenocarcinoma A549 cells and human pancreatic cancer MIA PaCa-2 cells) and two normal cell lines (mouse fibroblast transfected with human epidermal growth factor receptor 2 [HER2] cells and human fibroblast WI38 cells) were used. The cytotoxicity of NIR-PIT was evaluated using anti-epidermal growth factor receptor (EGFR) antibody panitumumab and anti-HER2 antibody transtuzumab. RESULTS: Cellular senescence was induced in A549 and MIA PaCa-2 cells by 10 Gy γ-irradiation. The up-regulation of cellular senescence markers and characteristic morphological changes in senescent cells, including enlargement, flattening, and multinucleation, were observed in cancer cells after 5 days of γ-irradiation. Then, NIR-PIT targeting EGFR was performed on these senescent cancer cells. The NIR-PIT induced morphological changes, including bleb formation, swelling, and the inflow of extracellular fluid, and induced a significant decrease in cellular viability. These results suggested that NIR-PIT may induce cytotoxicity using the same mechanism in senescent cancer cells. In addition, similar morphological changes were also induced in radiation-induced senescent 3T3-HER2 fibroblasts by NIR-PIT targeting human epidermal growth factor receptor 2. CONCLUSION: NIR-PIT eliminates both senescent cancer and stromal cells in vitro suggesting it may be a novel strategy for tumor treatment.


Subject(s)
Cellular Senescence , ErbB Receptors , Immunotherapy , Phototherapy , Stromal Cells , Humans , Cellular Senescence/radiation effects , Animals , Mice , Immunotherapy/methods , Stromal Cells/metabolism , Phototherapy/methods , ErbB Receptors/metabolism , Cell Line, Tumor , Infrared Rays/therapeutic use , Receptor, ErbB-2/metabolism , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Trastuzumab/pharmacology , Panitumumab/pharmacology , A549 Cells , Gamma Rays
8.
Pak J Biol Sci ; 27(5): 276-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38840468

ABSTRACT

<b>Background and Objective:</b> Gamma irradiation induces genotoxicity, characterized by the formation of extra-nuclear bodies and left behind during the anaphase stage of cell division, often referred to as a micronucleus (MN). The present work aims to monitor exposure to ionizing radiation as a genotoxic agent in the lymphocytes of workers at radiation energy centers. <b>Materials and Methods:</b> The lymphocyte cytokinesis block micronucleus assay used and analyzed the correlation between the Nuclear Division Index (NDI), age, blood type and the number of micronuclei (MN). Blood samples were collected from 20 volunteers in heparin tubes, exposed to 2 Gy gamma rays and cultured <i>in vitro</i>. <b>Results:</b> A significant difference in the number of micronuclei between blood group A and blood groups A, B and AB. The Nuclear Division Index (NDI) value for lymphocytes of radiation energy center workers after gamma radiation was significant (1.74±0.1) but still within the normal range. Neither MN frequency nor NDI values correlated with age, but MN frequency showed a correlation with blood type. <b>Conclusion:</b> The gamma irradiation did not induce a cytostatic effect but proved genotoxic to the lymphocytes of radiation energy center workers. Notably, blood type A demonstrated higher sensitivity to gamma radiation.


Subject(s)
Cytokinesis , Gamma Rays , Lymphocytes , Micronucleus Tests , Occupational Exposure , Humans , Gamma Rays/adverse effects , Lymphocytes/radiation effects , Lymphocytes/metabolism , Micronucleus Tests/methods , Cytokinesis/radiation effects , Occupational Exposure/adverse effects , Adult , Male , Middle Aged , Micronuclei, Chromosome-Defective/radiation effects , Female
9.
PLoS One ; 19(6): e0304810, 2024.
Article in English | MEDLINE | ID: mdl-38857267

ABSTRACT

This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.


Subject(s)
Gamma Rays , Genome, Bacterial , Radiation Tolerance , Radiation Tolerance/genetics , Background Radiation , Whole Genome Sequencing , India , Bacillus/genetics , Bacillus/radiation effects , Bacillus/metabolism , DNA Repair
10.
Front Public Health ; 12: 1388783, 2024.
Article in English | MEDLINE | ID: mdl-38903588

ABSTRACT

Background: Although data on outdoor gamma radiation are available for many countries, they have generally been obtained with measurements performed in undisturbed environments instead of in urban areas where most of the population lives. Only one large national survey, with on-site measurements in urban areas, has been identified worldwide, probably due to high costs (e.g., personnel and instrumentation) and difficulties in selecting measuring points. Methods: A campaign of outdoor gamma radiation measurements has been carried out in the entire Italian territory. All measurement points were selected at the infrastructures of an Italian telecommunications company as representatives of all the possible situations of outdoor exposure to gamma radiation for population in urban areas. Ten replicates of portable gamma (X) detectors carried out all the measurements. Results: Approximately 4,000 measurements have been performed. They are distributed across 2,901 Italian municipalities, accounting for 75% of the Italian population. The national population-weighted mean of the gamma ambient dose equivalent rate (ADER) is 117 nSv h-1, and it ranges from 62 to 208 nSv h-1 and from 40 to 227 nSv h-1 for 21 regions and 107 provinces, respectively. The average variability at the municipal level, in terms of the coefficient of variation (CV) is 21%, ranging from 3 to 84%. The impact of land coverage and the distance from a building on the outdoor gamma radiation level was assessed with complementary measurements, leading to differences ranging from -40 to 50% and to 50%, respectively. Conclusion: A representative campaign of outdoor gamma dose rate measurements has been performed in Italy, only in urban areas, to assess the exposure effect due to outdoor gamma radiation on the population. It is the largest national campaign in urban areas worldwide, with a total of 3,876 on-site measurements. The land coverage and the distance from surrounding buildings were recognized to strongly affect outdoor gamma radiation levels, leading to high variability within small areas. The collaboration with a company that owns a network of facilities on a national territory as dense as the residing population made this survey feasible and affordable. Other countries might adopt this methodology to conduct national surveys in urban environments.


Subject(s)
Gamma Rays , Italy , Humans , Urban Population/statistics & numerical data , Radiation Exposure/statistics & numerical data , Radiation Monitoring , Environmental Exposure/statistics & numerical data
11.
Radiat Prot Dosimetry ; 200(10): 881-889, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38834189

ABSTRACT

This research forms a part of the comprehensive Indian Environmental Radiation Monitoring Network program, focusing on the continuous measurement of absorbed dose rate in outdoor air due to natural gamma radiation (cosmic and terrestrial) in Bengaluru, Karnataka, India. Over the course of a decade (2013-2023), data were collected from 41 monitoring locations in the city using permanently field-installed Geiger-Mueller detector-based environmental radiation monitors. This paper presents an analysis of the extensive long-term monitoring results. The mean absorbed gamma dose rate in outdoor air across the monitoring locations ranged from 84 ± 9 to 156 ± 4 nGy.h-1, with a calculated mean value of 124 ± 15 nGy.h-1. The estimated mean annual effective dose due to outdoor natural gamma radiation varied from 0.10 ± 0.01 to 0.19 ± 0.01 mSv.y-1, with an overall mean of 0.15 ± 0.02 mSv.y-1.


Subject(s)
Air Pollutants, Radioactive , Background Radiation , Gamma Rays , Radiation Dosage , Radiation Monitoring , India , Radiation Monitoring/methods , Air Pollutants, Radioactive/analysis , Humans
12.
PLoS One ; 19(6): e0303434, 2024.
Article in English | MEDLINE | ID: mdl-38865377

ABSTRACT

The modulation of macrophage polarization is a promising strategy for maintaining homeostasis and improving innate and adaptive immunity. Low-dose ionizing radiation has been implicated in macrophage immunomodulatory responses. However, studies on the relationship between exosomes and regulation of macrophage polarization induced by ionizing radiation are limited. Therefore, this study investigated the alterations in macrophages and exosomes induced by gamma irradiation and elucidated the underlying mechanisms. We used the mouse macrophage cell line RAW 264.7 to generate macrophages and performed western blot, quantitative reverse transcription-PCR, and gene ontology analyses to elucidate the molecular profiles of macrophage-derived exosomes under varying treatment conditions, including 10 Gy gamma irradiation. Exosomes isolated from gamma-irradiated M1 macrophages exhibited an enhanced M1 phenotype. Irradiation induced the activation of NF-κB and NLRP3 signaling in M1 macrophages, thereby promoting the expression of pro-inflammatory cytokines. Cytokine expression was also upregulated in gamma-irradiated M1 macrophage-released exosomes. Therefore, gamma irradiation has a remarkable effect on the immunomodulatory mechanisms and cytokine profiles of gamma-irradiated M1 macrophage-derived exosomes, and represents a potential immunotherapeutic modality.


Subject(s)
Cytokines , Exosomes , Gamma Rays , Macrophages , Animals , Exosomes/metabolism , Exosomes/radiation effects , Mice , Macrophages/radiation effects , Macrophages/immunology , Macrophages/metabolism , RAW 264.7 Cells , Cytokines/metabolism , NF-kappa B/metabolism , Signal Transduction/radiation effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophage Activation/radiation effects
13.
J Environ Radioact ; 277: 107459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833882

ABSTRACT

The objective of this study was to investigate the effects of gamma irradiation on the aquatic environment. We used three wild fish species to compare phenotypic responses with a fish model such as Danio rerio. We focused on embryonic development, a sensitive life stage to stressors like ionizing radiation, to evaluate the effects of exposure to 0.5 and 5 mGy h-1 on Arctic char, trout and stickleback embryos from fertilization to free-swimming larvae. Irradiation did not cause mortality but induced an acceleration of hatching in the three species. These new data on wild species, obtained under comparable irradiation conditions, did not go against the threshold values for the protection of freshwater aquatic ecosystems. Moreover, irradiation caused inter-specific sublethal effects, such as an increase in non-eyed egg proportion in Arctic char, an increase in the incubation period in trout and an acceleration of larval mortality in stickleback. The consequences of these early effects on the adult stage remain to be studied.


Subject(s)
Gamma Rays , Animals , Smegmamorpha , Fishes , Water Pollutants, Radioactive/toxicity , Trout , Larva/radiation effects
14.
Sci Rep ; 14(1): 13484, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866836

ABSTRACT

Current study is the first ever storage cum market trial of radiation processed (28 tons) of potato conducted in India at a commercial scale. The objective was to affirm the efficacy of very low dose of gamma radiation processing of potato for extended storage with retained quality and to understand the plausible mechanism at the gene modulation level for suppression of potato sprouting. Genes pertaining to abscisic acid (ABA) biosynthesis were upregulated whereas its catabolism was downregulated in irradiated potatoes. Additionally, genes related to auxin buildup were downregulated in irradiated potatoes. The change in the endogenous phytohormone contents in irradiated potato with respect to the control were found to be correlated well with the differential expression level of certain related genes. Irradiated potatoes showed retention of processing attributes including cooking and chip-making qualities, which could be attributed to the elevated expression of invertase inhibitor in these tubers. Further, quality retention in radiation treated potatoes may also be related to inhibition in the physiological changes due to sprout inhibition. Ecological and economical analysis of national and global data showed that successful adoption of radiation processing may gradually replace sprout suppressants like isopropyl N-(3-chlorophenyl) carbamate (CIPC), known to leave residue in the commodity, stabilize the wholesale annual market price, and provide a boost to the industries involved in product manufacturing.


Subject(s)
Gene Expression Regulation, Plant , Plant Tubers , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/radiation effects , Plant Tubers/genetics , Plant Tubers/metabolism , Plant Tubers/radiation effects , Gene Expression Regulation, Plant/radiation effects , Food Storage/methods , Gamma Rays , Plant Growth Regulators/metabolism , Food Irradiation/methods , Abscisic Acid/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Sci Rep ; 14(1): 13571, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866887

ABSTRACT

The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.


Subject(s)
Gamma Rays , Macaca mulatta , Proteomics , Animals , Gamma Rays/adverse effects , Male , Proteomics/methods , Biomarkers/blood , Whole-Body Irradiation/adverse effects , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Blood Proteins/analysis , Blood Proteins/metabolism , Proteome/analysis , Proteome/metabolism
16.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928431

ABSTRACT

In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.


Subject(s)
Gamma Rays , Nerve Growth Factors , Sensorimotor Cortex , Animals , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/radiation effects , Gamma Rays/adverse effects , Rats , Male , Nerve Growth Factors/metabolism , Radiation, Ionizing , Neurotrophin 3/metabolism , Aging , Locomotion/radiation effects , Magnetic Resonance Imaging
17.
Int J Radiat Biol ; 100(7): 1104-1115, 2024.
Article in English | MEDLINE | ID: mdl-38870412

ABSTRACT

PURPOSE: Stevia rebaudiana Bertoni is a perennial herb, widely used as a natural sweetener around the globe. The key compounds responsible for its sweetness includes stevioside and rebaudioside-A. In order to improve these steviol glycosides, the present study was initiated to study the effect of induced mutagenesis on growth parameters, steviol glycosides and nuclear DNA content in Stevia rebaudiana Bertoni using ten doses of gamma-rays (5-100 kR). MATERIALS AND METHODS: Healthy seeds of 'Madhuguna' variety of Stevia rebaudiana Bertoni developed and maintained at stevia breeding farm, Agrotechnology division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (HP), India were irradiated with ten doses of gamma rays (600 seeds each/dose) ranging from 5 kR to 100 kR (i.e., 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100 kR) using Co60 gamma irradiation chamber at CCS Haryana Agricultural University, Hisar, (Haryana), India. RESULTS: Significant variations were recorded for all the seedling traits studied while major impact was noticed on the seedling after reaching the cotyledonary stage and doses above 40 kR showed absolute mortality of the seedlings. Based on probit analysis, the optimum LD50 dose lies in the range of 20-23 kR. Glycosidic profiling of 296 mutants using high-performance liquid chromatography showed decreased total steviol glycoside content with increased radiation dose. Doses 5 kR and 10 kR, were found to be effective in increasing the overall glycosidic content. A total of 72 promising mutants were also screened for increased rebaudioside-A stevioside ratio. Comparison of nuclear DNA content using flow cytometry revealed a similar decrease in the total nuclear DNA content with increase in dosage of gamma rays. The average genome size at 5, 10, 15, 20 and 30 kR treatments were 2.72, 2.69, 2.68, 2.70 and 2.66 pg as compared to 2.72 pg in control. CONCLUSIONS: Mild dose of gamma rays (5 and 10 kR) in stevia were found to be effective in improving the mean steviol glycoside content and may be used in future stevia mutation programmes.


Subject(s)
Diterpenes, Kaurane , Gamma Rays , Stevia , Stevia/radiation effects , Radiation Tolerance , Glucosides , Dose-Response Relationship, Radiation
18.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792087

ABSTRACT

In this work, we present the modification of a medical-grade silicone catheter with the N-vinylimidazole monomer using the grafting-from method at room temperature and induced by gamma rays. The catheters were modified by varying the monomer concentration (20-100 vol%) and the irradiation dose (20-100 kGy). Unlike the pristine material, the grafted poly(N-vinylimidazole) chains provided the catheter with hydrophilicity and pH response. This change allowed for the functionalization of the catheters to endow it with antimicrobial features. Thus, the quaternization of amines with iodomethane and bromoethane was performed, as well as the immobilization of silver and ampicillin. The inhibitory capacity of these materials, functionalized with antimicrobial agents, was challenged against Escherichia coli and Staphylococcus aureus strains, showing variable results, where loaded ampicillin was amply better at eliminating bacteria.


Subject(s)
Escherichia coli , Imidazoles , Silicones , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Silicones/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Catheters/microbiology , Microbial Sensitivity Tests , Polyvinyls/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ampicillin/chemistry , Ampicillin/pharmacology , Gamma Rays
19.
Sci Rep ; 14(1): 12160, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802452

ABSTRACT

The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033-1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.


Subject(s)
Cell Survival , DNA Breaks, Double-Stranded , Dose-Response Relationship, Radiation , Epithelial Cells , Histones , Lens, Crystalline , Humans , Epithelial Cells/radiation effects , Epithelial Cells/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/cytology , DNA Breaks, Double-Stranded/radiation effects , Histones/metabolism , Cell Survival/radiation effects , Radiation, Ionizing , Cell Line , DNA Repair/radiation effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , X-Rays , Gamma Rays/adverse effects
20.
Appl Radiat Isot ; 210: 111340, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749237

ABSTRACT

OBJECTIVE: To quantify the difference between the (collapsed cone convolution) CCC algorithm and the (Monte Carlo) MC algorithm and remind that the planners should pay attention to some possible uncertainties of the two algorithms when employing the two algorithms. METHODS: Thirty patients' cervical cancer VMAT plans were designed with a Pinnacle TPS (Philips) and divided equally into two groups: the simple group (SG, target volume was only the PTV) and the complex group (CG, target volume included the PTV and PGTV). The plans from the Pinnacle TPS were transferred to the Monaco TPS (Elekta). The plans' parameters all remained unchanged, and the dose was recalculated. Gamma passing rates (GPRs) obtained from dose distribution from Pinnacle TPS compared with that from Monaco TPS with SNC software based on three triaxial planes (transverse, sagittal and coronal). GPRs and DVH were used to quantify the difference between the CCC algorithm in pinnacle TPS and the MC algorithm in Monaco TPS. RESULTS: Among the statistical dose indexes in DVHs from the Pinnacle and Monaco TPSs, there were 7(7/15) dose indexes difference with statistically significant differences in the SG, and 10(10/18) dose indexes difference with statistically significant differences in the CG. With 3%/3 mm criterion, the most (5/6) GPRs were greater than 95% from the SG and CG. But with 2%/2 mm criterion, the most (5/6) GPRs were less than 90% from the two groups. In addition, we found that GPRs were also related to the selected triaxial planes and the complexity of the plan (GPRs varied with the SG and CG). CONCLUSIONS: Obvious difference between the CCC and MC algorithms from Pinnacle and Monaco TPS. DVH maybe better than 2D gamma analysis on quantifying difference of the CCC and MC algorithms. Some attention should be paid to the uncertainty of the TPS algorithm, especially when the indicator on the DVH is at the critical point of the threshold value, because the algorithm used may overestimate or underestimate the DVH indicator.


Subject(s)
Algorithms , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/radiotherapy , Female , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Gamma Rays/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...