Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.026
1.
Food Res Int ; 188: 114517, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823849

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Blood Glucose , Cicer , Cross-Over Studies , Digestion , Insulin , Postprandial Period , Rheology , Humans , Cicer/chemistry , Postprandial Period/physiology , Insulin/blood , Insulin/metabolism , Blood Glucose/metabolism , Adult , Male , Female , Young Adult , Starch/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/blood , Healthy Volunteers , Kinetics
2.
Methods Enzymol ; 698: 195-219, 2024.
Article En | MEDLINE | ID: mdl-38886032

Glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, and glucagon are three naturally occurring peptide hormones that mediate glucoregulation. Several agonists representing appropriately modified native ligands have been developed to maximize metabolic benefits with reduced side-effects and many have entered the clinic as type 2 diabetes and obesity therapeutics. In this work, we describe strategies for improving the stability of the peptide ligands by making them refractory to dipeptidyl peptidase-4 catalyzed hydrolysis and inactivation. We describe a series of alkylations with variations in size, shape, charge, polarity, and stereochemistry that are able to engender full activity at the receptor(s) while simultaneously resisting enzyme-mediated degradation. Utilizing this strategy, we offer a novel method of modulating receptor activity and fine-tuning pharmacology without a change in peptide sequence.


Glucagon-Like Peptide 1 , Humans , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Drug Design , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Peptides/chemistry , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/metabolism , Alkylation , Glucagon/chemistry , Glucagon/metabolism , Animals , Ligands , Hydrolysis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism
3.
CNS Neurosci Ther ; 30(6): e14806, 2024 Jun.
Article En | MEDLINE | ID: mdl-38887182

AIM: Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS: Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS: GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION: GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.


Gastric Inhibitory Polypeptide , Glucose Transporter Type 3 , Glucose , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Reactive Oxygen Species , Spinal Cord Injuries , Animals , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neurons/metabolism , Neurons/drug effects , Rats , Reactive Oxygen Species/metabolism , Glucose Transporter Type 3/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Male , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
4.
Peptides ; 178: 171254, 2024 Aug.
Article En | MEDLINE | ID: mdl-38815655

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9-36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3-42) and Ex(9-39) treatment. While GLP-1(9-36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3-42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9-36) and GIP(3-42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9-36) and GIP(3-42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.


Diet, High-Fat , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Incretins , Insulin-Secreting Cells , Animals , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Male , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Mice , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Diet, High-Fat/adverse effects , Incretins/pharmacology , Incretins/metabolism , Peptide Fragments/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Apoptosis/drug effects , Insulin/metabolism
5.
J Endocrinol ; 261(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38579777

Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.


Adipose Tissue , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Humans , Gastric Inhibitory Polypeptide/metabolism , Animals , Adipose Tissue/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Glucose/metabolism , Lipolysis , Obesity/metabolism
6.
Peptides ; 178: 171216, 2024 Aug.
Article En | MEDLINE | ID: mdl-38636809

Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic ß cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.


Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Incretins , Obesity , Humans , Gastrointestinal Microbiome/physiology , Obesity/metabolism , Obesity/microbiology , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Gastric Inhibitory Polypeptide/metabolism , Animals
7.
Peptides ; 177: 171212, 2024 Jul.
Article En | MEDLINE | ID: mdl-38608836

Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.


Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism , Humans , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/chemistry , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Obesity/drug therapy , Obesity/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Peptide Fragments/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/metabolism
8.
Peptides ; 177: 171228, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657908

Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.


Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Animals , Gastrointestinal Hormones/metabolism , Bone Density/drug effects , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/pathology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/analogs & derivatives , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/therapeutic use
9.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665015

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
10.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G736-G746, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38625142

Autoimmune liver diseases are associated with an increased risk of diabetes, yet the underlying mechanisms remain unknown. In this cross-sectional study, we investigated the glucose-regulatory disturbances in patients with autoimmune hepatitis (AIH, n = 19), primary biliary cholangitis (PBC, n = 15), and primary sclerosing cholangitis (PSC, n = 6). Healthy individuals (n = 24) and patients with metabolic dysfunction-associated steatotic liver disease (MASLD, n = 18) were included as controls. Blood samples were collected during a 120-min oral glucose tolerance test. We measured the concentrations of glucose, C-peptide, insulin, glucagon, and the two incretin hormones, glucose insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin resistance (Matsuda index), insulin clearance, and insulinogenic index. All patient groups had increased fasting plasma glucose and impaired glucose responses compared with healthy controls. Beta-cell secretion was increased in AIH, PBC, and MASLD but not in PSC. Patients with AIH and MASLD had hyperglucagonemia and hepatic, as well as peripheral, insulin resistance and decreased insulin clearance, resulting in hyperinsulinemia. Patients with autoimmune liver disease had an increased GIP response, and those with AIH or PBC had an increased GLP-1 response. Our data demonstrate that the mechanism underlying glucose disturbances in patients with autoimmune liver disease differs from that underlying MASLD, including compensatory incretin responses in patients with autoimmune liver disease. Our results suggest that glucose disturbances are present at an early stage of the disease.NEW & NOTEWORTHY Patients with autoimmune liver disease but without overt diabetes display glucose disturbances early on in their disease course. We identified pathophysiological traits specific to these patients including altered incretin responses.


Blood Glucose , Hepatitis, Autoimmune , Insulin Resistance , Insulin , Humans , Female , Male , Middle Aged , Blood Glucose/metabolism , Cross-Sectional Studies , Adult , Insulin/blood , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/metabolism , Hepatitis, Autoimmune/complications , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Fatty Liver/metabolism , Fatty Liver/blood , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/metabolism , Aged , Glucose Tolerance Test , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/complications , Glucagon/blood , Glucagon/metabolism , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/complications , C-Peptide/blood
11.
Mol Metab ; 84: 101945, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653401

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Body Weight , Eating , Gastric Inhibitory Polypeptide , Animals , Gastric Inhibitory Polypeptide/metabolism , Mice , Male , Mice, Inbred C57BL , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Obesity/metabolism , Incretins/metabolism
12.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38494045

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Gastric Inhibitory Polypeptide , Overweight , Rats , Male , Female , Animals , Overweight/metabolism , Gastric Inhibitory Polypeptide/metabolism , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Peptides/metabolism , Homeostasis , RNA, Messenger/genetics
13.
Peptides ; 176: 171198, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527521

In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.


Energy Metabolism , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Signal Transduction , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/agonists , Humans , Energy Metabolism/drug effects , Signal Transduction/drug effects , Gastric Inhibitory Polypeptide/metabolism , Animals , Obesity/metabolism , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Brain/metabolism
14.
Peptides ; 176: 171200, 2024 Jun.
Article En | MEDLINE | ID: mdl-38555054

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαß and TCRγδ) and induced (TCRαß+CD4+ cells and TCRαß+CD8αß+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.


Glucagon-Like Peptide-1 Receptor , Inflammation , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Inflammation/metabolism , Inflammation/immunology , Animals , Immunomodulation , Gastrointestinal Microbiome/immunology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Signal Transduction
15.
Mol Metab ; 83: 101915, 2024 May.
Article En | MEDLINE | ID: mdl-38492844

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Body Weight , Eating , Gastric Inhibitory Polypeptide , Mice, Knockout , Obesity , Receptors, Gastrointestinal Hormone , Receptors, Leptin , Animals , Male , Mice , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucose/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Signal Transduction
16.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 115-121, 2024 06 01.
Article En | MEDLINE | ID: mdl-38511400

PURPOSE OF REVIEW: Various gut hormones interact with the brain through delicate communication, thereby influencing appetite and subsequent changes in body weight. This review summarizes the effects of gut hormones on appetite, with a focus on recent research. RECENT FINDINGS: Ghrelin is known as an orexigenic hormone, whereas glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), postprandial peptide YY (PYY), and oxyntomodulin (OXM) are known as anorexigenic hormones. Recent human studies have revealed that gut hormones act differently in various systems, including adipose tissue, beyond appetite and energy intake, and even involve in high-order thinking. Environmental factors including meal schedule, food contents and quality, type of exercise, and sleep deprivation also play a role in the influence of gut hormone on appetite, weight change, and obesity. Recently published studies have shown that retatrutide, a triple-agonist of GLP-1, GIP, and glucagon receptor, and orforglipron, a GLP-1 receptor partial agonist, are effective in weight loss and improving various metabolic parameters associated with obesity. SUMMARY: Various gut hormones influence appetite, and several drugs targeting these receptors have been reported to exert positive effects on weight loss in humans. Given that diverse dietary and environmental factors affect the actions of gut hormones and appetite, there is a need for integrated and largescale long-term studies in this field.


Appetite Regulation , Gastrointestinal Hormones , Obesity , Humans , Gastrointestinal Hormones/metabolism , Gastrointestinal Hormones/physiology , Appetite Regulation/physiology , Obesity/metabolism , Obesity/physiopathology , Cholecystokinin/physiology , Cholecystokinin/metabolism , Gastric Inhibitory Polypeptide/physiology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/physiology , Peptide YY/metabolism , Peptide YY/physiology , Oxyntomodulin , Animals , Ghrelin/physiology , Ghrelin/metabolism , Appetite/physiology , Appetite/drug effects
17.
J Med Chem ; 67(6): 4998-5010, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38458970

Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, ß-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.


Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/metabolism , Insulin/metabolism , Dipeptidyl Peptidase 4/metabolism , Peptide Hydrolases , Peptides , Endopeptidases , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism
18.
Peptides ; 175: 171179, 2024 May.
Article En | MEDLINE | ID: mdl-38360354

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Glucagon-Secreting Cells , Receptors, Gastrointestinal Hormone , Somatostatin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Signal Transduction
19.
Peptides ; 174: 171168, 2024 Apr.
Article En | MEDLINE | ID: mdl-38320643

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Diabetes Mellitus, Type 2 , Incretins , Receptors, Gastrointestinal Hormone , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Obesity/metabolism , Blood Glucose/metabolism , Duodenum/metabolism , Peptides/therapeutic use , Enteroendocrine Cells/metabolism , Receptors, G-Protein-Coupled , Glucagon-Like Peptide-1 Receptor/metabolism
20.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Article En | MEDLINE | ID: mdl-38353610

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Diabetes Mellitus, Type 2 , Incretins , Adult , Humans , Adolescent , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use
...