Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.824
Filter
1.
Microbiome ; 12(1): 117, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951915

ABSTRACT

BACKGROUND: Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration. RESULTS: In this study, we have developed a Java-based statistical framework ( https://github.com/KociOrges/cviewer ) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships. CONCLUSIONS: CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.


Subject(s)
Metagenomics , Software , Metagenomics/methods , Humans , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Computational Biology/methods , Metagenome , Crohn Disease/microbiology , Crohn Disease/genetics
2.
Front Endocrinol (Lausanne) ; 15: 1344152, 2024.
Article in English | MEDLINE | ID: mdl-38948515

ABSTRACT

Background: Analyzing bacterial microbiomes consistently using next-generation sequencing (NGS) is challenging due to the diversity of synthetic platforms for 16S rRNA genes and their analytical pipelines. This study compares the efficacy of full-length (V1-V9 hypervariable regions) and partial-length (V3-V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human gut microbiomes, with a focus on childhood obesity. Methods: In this observational and comparative study, we explored the differences between these two sequencing methods in taxonomic categorization and weight status prediction among twelve children with obstructive sleep apnea. Results: The full-length NGS method by Pacbio® identified 118 genera and 248 species in the V1-V9 regions, all with a 0% unclassified rate. In contrast, the partial-length NGS method by Illumina® detected 142 genera (with a 39% unclassified rate) and 6 species (with a 99% unclassified rate) in the V3-V4 regions. These approaches showed marked differences in gut microbiome composition and functional predictions. The full-length method distinguished between obese and non-obese children using the Firmicutes/Bacteroidetes ratio, a known obesity marker (p = 0.046), whereas the partial-length method was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways identified through full-length sequencing, 35 (48%) were associated with level 1 metabolism, compared to 28 of 61 pathways (46%) identified through the partial-length method. The full-length NGS also highlighted complex associations between body mass index z-score, three bacterial species (Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912), and 17 metabolic pathways. Both sequencing techniques revealed relationships between gut microbiota composition and OSA-related parameters, with full-length sequencing offering more comprehensive insights into associated metabolic pathways than the V3-V4 technique. Conclusion: These findings highlight disparities in NGS-based assessments, emphasizing the value of full-length NGS with amplicon sequence variant analysis for clinical gut microbiome research. They underscore the importance of considering methodological differences in future meta-analyses.


Subject(s)
Gastrointestinal Microbiome , Pediatric Obesity , RNA, Ribosomal, 16S , Sleep Apnea, Obstructive , Humans , Gastrointestinal Microbiome/genetics , Child , Male , RNA, Ribosomal, 16S/genetics , Female , Sleep Apnea, Obstructive/microbiology , Sleep Apnea, Obstructive/genetics , Pediatric Obesity/microbiology , Pediatric Obesity/genetics , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Body Weight , Adolescent
3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928411

ABSTRACT

This study aimed to investigate the gut microbiota composition in children with autism spectrum disorder (ASD) compared to neurotypical (NT) children, with a focus on identifying potential differences in gut bacteria between these groups. The microbiota was analyzed through the massive sequencing of region V3-V4 of the 16S RNA gene, utilizing DNA extracted from stool samples of participants. Our findings revealed no significant differences in the dominant bacterial phyla (Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Verrucomicrobiota) between the ASD and NT groups. However, at the genus level, notable disparities were observed in the abundance of Blautia, Prevotella, Clostridium XI, and Clostridium XVIII, all of which have been previously associated with ASD. Furthermore, a sex-based analysis unveiled additional discrepancies in gut microbiota composition. Specifically, three genera (Megamonas, Oscilibacter, Acidaminococcus) exhibited variations between male and female groups in both ASD and NT cohorts. Particularly noteworthy was the exclusive presence of Megamonas in females with ASD. Analysis of predicted metabolic pathways suggested an enrichment of pathways related to amine and polyamine degradation, as well as amino acid degradation in the ASD group. Conversely, pathways implicated in carbohydrate biosynthesis, degradation, and fermentation were found to be underrepresented. Despite the limitations of our study, including a relatively small sample size (30 ASD and 31 NT children) and the utilization of predicted metabolic pathways derived from 16S RNA gene analysis rather than metagenome sequencing, our findings contribute to the growing body of evidence suggesting a potential association between gut microbiota composition and ASD. Future research endeavors should focus on validating these findings with larger sample sizes and exploring the functional significance of these microbial differences in ASD. Additionally, there is a critical need for further investigations to elucidate sex differences in gut microbiota composition and their potential implications for ASD pathology and treatment.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/metabolism , Female , Male , Child , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Feces/microbiology , Child, Preschool , Sex Factors , Sex Characteristics , Metabolic Networks and Pathways
4.
Medicine (Baltimore) ; 103(26): e38654, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941393

ABSTRACT

Gut microbiota, a special group of microbiotas in the human body, contributes to health in a way that can't be ignored. In recent years, Mendelian randomization, which is a widely used and successful method of analyzing causality, has been investigated for the relationship between the gut microbiota and related diseases. Unfortunately, there seems to be a shortage of systematic bibliometric analysis in this field. Therefore, this study aims to investigate the research progress of Mendelian randomization for gut microbiota through comprehensive bibliometric analysis. In this study, publications about Mendelian randomization for gut microbiota were gathered from 2013 to 2023, utilizing the Web of Science Core Collection as our literature source database. The search strategies were as follows: TS = (intestinal flora OR gut flora OR intestinal microflora OR gut microflora OR intestinal microbiota OR gut microbiota OR bowel microbiota OR bowel flora OR gut bacteria OR intestinal tract bacteria OR bowel bacteria OR gut metabolites OR gut microbiota) and TS = (Mendelian randomization). VOSviewer (version 1.6.18), CiteSpace (version 6.1.R1), Microsoft Excel 2021, and Scimago Graphica were employed for bibliometric and visualization analysis. According to research, from January 2013 to August 2023, 154 publications on Mendelian randomization for gut microbiota were written by 1053 authors hailing from 332 institutions across 31 countries and published in 86 journals. China had the highest number of publications, with 109. Frontiers in Microbiology is the most prolific journal, and Lei Zhang has published the highest number of significant articles. The most popular keywords were "Mendelian randomization," "gut microbiota," "instruments," "association," "causality," "gut microbiome," "risk," "bias," "genome-wide association," and "causal relationship." Moreover, the current research hotspots in this field focus on utilizing a 2-sample Mendelian randomization to investigate the relationship between gut microbiota and associated disorders. This research systematically reveals a comprehensive overview of the literature that has been published over the last 10 years about Mendelian randomization for gut microbiota. Moreover, the knowledge of key information in the field from a bibliometric perspective may greatly facilitate future research in the field.


Subject(s)
Bibliometrics , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Gastrointestinal Microbiome/genetics , Humans , Causality
5.
Microbiome ; 12(1): 116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943206

ABSTRACT

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Subject(s)
Feces , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , Swine/microbiology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Metagenomics/methods , Prevotella/genetics , Prevotella/classification , Ruminococcus/genetics , Treponema/genetics
6.
Nutrients ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931155

ABSTRACT

Gut microbiota might affect the severity and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to characterize gut dysbiosis and clinical parameters regarding fibrosis stages assessed by magnetic resonance elastography. This study included 156 patients with MASLD, stratified into no/mild fibrosis (F0-F1) and moderate/severe fibrosis (F2-F4). Fecal specimens were sequenced targeting the V4 region of the 16S rRNA gene and analyzed using bioinformatics. The genotyping of PNPLA3, TM6SF2, and HSD17B13 was assessed by allelic discrimination assays. Our data showed that gut microbial profiles between groups significantly differed in beta-diversity but not in alpha-diversity indices. Enriched Fusobacterium and Escherichia_Shigella, and depleted Lachnospira were found in the F2-F4 group versus the F0-F1 group. Compared to F0-F1, the F2-F4 group had elevated plasma surrogate markers of gut epithelial permeability and bacterial translocation. The bacterial genera, PNPLA3 polymorphisms, old age, and diabetes were independently associated with advanced fibrosis in multivariable analyses. Using the Random Forest classifier, the gut microbial signature of three genera could differentiate the groups with high diagnostic accuracy (AUC of 0.93). These results indicated that the imbalance of enriched pathogenic genera and decreased beneficial bacteria, in association with several clinical and genetic factors, were potential contributors to the pathogenesis and progression of MASLD.


Subject(s)
Gastrointestinal Microbiome , Liver Cirrhosis , Membrane Proteins , Severity of Illness Index , Humans , Gastrointestinal Microbiome/genetics , Liver Cirrhosis/microbiology , Liver Cirrhosis/genetics , Female , Male , Middle Aged , Membrane Proteins/genetics , Lipase/genetics , Aged , RNA, Ribosomal, 16S/genetics , Dysbiosis , Fatty Liver/microbiology , Fatty Liver/genetics , Feces/microbiology , Adult , Genetic Variation , Elasticity Imaging Techniques , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Acyltransferases , 17-Hydroxysteroid Dehydrogenases , Phospholipases A2, Calcium-Independent
7.
Appl Microbiol Biotechnol ; 108(1): 396, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922447

ABSTRACT

The human gut microbiota refers to a diverse community of microorganisms that symbiotically exist in the human intestinal system. Altered microbial communities have been linked to many human pathologies. However, there is a lack of rapid and efficient methods to assess gut microbiota signatures in practice. To address this, we established an appraisal system containing 45 quantitative real-time polymerase chain reaction (qPCR) assays targeting gut core microbes with high prevalence and/or abundance in the population. Through comparative genomic analysis, we selected novel species-specific genetic markers and primers for 31 of the 45 core microbes with no previously reported specific primers or whose primers needed improvement in specificity. We comprehensively evaluated the performance of the qPCR assays and demonstrated that they showed good sensitivity, selectivity, and quantitative linearity for each target. The limit of detection ranged from 0.1 to 1.0 pg/µL for the genomic DNA of these targets. We also demonstrated the high consistency (Pearson's r = 0.8688, P < 0.0001) between the qPCR method and metagenomics next-generation sequencing (mNGS) method in analyzing the abundance of selected bacteria in 22 human fecal samples. Moreover, we quantified the dynamic changes (over 8 weeks) of these core microbes in 14 individuals using qPCR, and considerable stability was demonstrated in most participants, albeit with significant individual differences. Overall, this study enables the simple and rapid quantification of 45 core microbes in the human gut, providing a promising tool to understand the role of gut core microbiota in human health and disease. KEY POINTS: • A panel of original qPCR assays was developed to quantify human gut core microbes. • The qPCR assays were evaluated and compared with mNGS using real fecal samples. • This method was used to dynamically profile the gut core microbiota in individuals.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Real-Time Polymerase Chain Reaction , Humans , Real-Time Polymerase Chain Reaction/methods , Gastrointestinal Microbiome/genetics , Feces/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sensitivity and Specificity , DNA Primers/genetics , DNA, Bacterial/genetics
8.
Genes (Basel) ; 15(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927665

ABSTRACT

BACKGROUND: Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE: To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS: Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS: MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION: This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.


Subject(s)
Esophageal Neoplasms , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/blood , Gastrointestinal Microbiome/genetics , Metabolome
9.
Genes (Basel) ; 15(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927705

ABSTRACT

Recent research has highlighted associations between sleep and microbial taxa and pathways. However, the causal effect of these associations remains unknown. To investigate this, we performed a bidirectional two-sample Mendelian randomization (MR) analysis using summary statistics of genome-wide association studies (GWAS) from 412 gut microbiome traits (N = 7738) and GWAS studies from seven sleep-associated traits (N = 345,552 to 386,577). We employed multiple MR methods to assess causality, with Inverse Variance Weighted (IVW) as the primary method, alongside a Bonferroni correction ((p < 2.4 × 10-4) to determine significant causal associations. We further applied Cochran's Q statistical analysis, MR-Egger intercept, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) for heterogeneity and pleiotropy assessment. IVW estimates revealed 79 potential causal effects of microbial taxa and pathways on sleep-related traits and 45 inverse causal relationships, with over half related to pathways, emphasizing their significance. The results revealed two significant causal associations: genetically determined relative abundance of pentose phosphate decreased sleep duration (p = 9.00 × 10-5), and genetically determined increase in fatty acid level increased the ease of getting up in the morning (p = 8.06 × 10-5). Sensitivity analyses, including heterogeneity and pleiotropy tests, as well as a leave-one-out analysis of single nucleotide polymorphisms, confirmed the robustness of these relationships. This study explores the potential causal relationships between sleep and microbial taxa and pathways, offering novel insights into their complex interplay.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Sleep , Humans , Gastrointestinal Microbiome/genetics , Sleep/genetics , Polymorphism, Single Nucleotide , Causality
10.
J Med Microbiol ; 73(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38865187

ABSTRACT

Introduction. Colorectal cancer (CRC) is a leading cause of cancer deaths, closely linked to the intestinal microbiota and bile acid metabolism. Secondary bile acids, like deoxycholic and lithocholic acid, are associated with increased CRC risk due to their disruption of vital cellular functions. In contrast, isoallolithocholic acid (isoalloLCA) shows potential health benefits, highlighting the complex role of bile acids in CRC. A specific primer set was previously developed to amplify homologs of the 5α-reductase gene (5ar), which are involved in the biosynthesis of isoalloLCA, thereby enabling the estimation of abundance of 5ar (5ar levels) in the intestine.Hypothesis/Gap Statement. We hypothesized that 5ar levels in the intestine are associated with CRC.Aim. This study aimed to investigate intestinal 5ar levels and compare them across different stages of the adenoma-carcinoma sequence, providing insights into novel strategies for monitoring CRC risk.Methodology. DNA was extracted from intestinal lavage fluids (ILF) collected during 144 colonoscopies. Next-generation sequencing (NGS) was employed to examine the sequence of 5ar homologues, using a specific primer set on DNA from seven selected ILFs - four from carcinoma patients and three from individuals with non-neoplastic mucosa. Additionally, we used quantitative PCR (qPCR) to measure 5ar levels in all 144 DNA samples.Results. We conducted 144 colonoscopies and categorized patients according to the adenoma-cancer sequence: 52 with non-neoplastic mucosa, 69 with adenomas and 23 with carcinoma. Analysis of 292,042 NGS-derived 5ar sequences revealed the seven most prevalent amplicon sequence variants, each 254 base pairs in length. These closely matched or were identical to 5ar sequences in Bacteroides uniformis, Phocaeicola vulgatus and Phocaeicola dorei. Furthermore, qPCR analysis demonstrated significantly lower 5ar levels in the carcinoma group compared to those in the non-neoplastic mucosa group (P = 0.0004). A similar, though not statistically significant, trend was observed in the adenoma group (P = 0.0763), suggesting that 5ar levels decrease as CRC progresses.Conclusion. These findings indicate that PCR-based monitoring of 5ar levels in intestinal samples over time could provide a non-invasive, rapid and cost-effective method for assessing an increased risk of CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Male , Middle Aged , Aged , Female , Disease Progression , Gastrointestinal Microbiome/genetics , Adult , Aged, 80 and over
11.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837944

ABSTRACT

Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid ß-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.


Subject(s)
Chickens , Fatty Liver , Gastrointestinal Microbiome , Animals , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Fatty Liver/genetics , Fatty Liver/microbiology , Fatty Liver/veterinary , Fatty Liver/metabolism , Liver/metabolism , Liver/microbiology , Transcriptome , Genome , Metabolome , Poultry Diseases/microbiology , Poultry Diseases/genetics
12.
Microbiome ; 12(1): 102, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840247

ABSTRACT

BACKGROUND: Mammalian intestine harbors a mass of phages that play important roles in maintaining gut microbial ecosystem and host health. Pig has become a common model for biomedical research and provides a large amount of meat for human consumption. However, the knowledge of gut phages in pigs is still limited. RESULTS: Here, we investigated the gut phageome in 112 pigs from seven pig breeds using PhaBOX strategy based on the metagenomic data. A total of 174,897 non-redundant gut phage genomes were assembled from 112 metagenomes. A total of 33,487 gut phage genomes were classified and these phages mainly belonged to phage families such as Ackermannviridae, Straboviridae, Peduoviridae, Zierdtviridae, Drexlerviridae, and Herelleviridae. The gut phages in seven pig breeds exhibited distinct communities and the gut phage communities changed with the age of pig. These gut phages were predicted to infect a broad range of 212 genera of prokaryotes, such as Candidatus Hamiltonella, Mycoplasma, Colwellia, and Lactobacillus. The data indicated that broad KEGG and CAZy functions were also enriched in gut phages of pigs. The gut phages also carried the antimicrobial resistance genes (ARGs) and the most abundant antimicrobial resistance genotype was diaminopyrimidine resistance. CONCLUSIONS: Our research delineates a landscape for gut phages in seven pig breeds and reveals that gut phages serve as a key reservoir of ARGs in pigs. Video Abstract.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Animals , Swine , Bacteriophages/genetics , Gastrointestinal Microbiome/genetics , Metagenomics , Genome, Viral , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Metagenome , Virome/genetics , Drug Resistance, Bacterial/genetics
13.
Front Cell Infect Microbiol ; 14: 1348685, 2024.
Article in English | MEDLINE | ID: mdl-38841114

ABSTRACT

Background: The microbiota-gut-lung axis has elucidated a potential association between gut microbiota and idiopathic pulmonary fibrosis (IPF). However, there is a paucity of population-level studies with providing robust evidence for establishing causality. This two-sample Mendelian randomization (MR) analysis aimed to investigate the causal relationship between the gut microbiota and IPF as well as lung function. Materials and methods: Adhering to Mendel's principle of inheritance, this MR analysis utilized summary-level data from respective genome-wide association studies (GWAS) involving 211 gut microbial taxa, IPF, and lung function indicators such as FEV1, FVC, and FEV1/FVC. A bidirectional two-sample MR design was employed, utilizing multiple MR analysis methods, including inverse variance-weighted (IVW), weighted median, MR-Egger, and weighted mode. Multivariable MR (MVMR) was used to uncover mediating factors connecting the exposure and outcome. Additionally, comprehensive sensitivity analyses were conducted to ensure the robustness of the results. Results: The MR results confirmed four taxa were found causally associated with the risk of IPF. Order Bifidobacteriales (OR=0.773, 95% CI: 0.610-0.979, p=0.033), Family Bifidobacteriaceae (OR=0.773, 95% CI: 0.610-0.979, p=0.033), and Genus RuminococcaceaeUCG009 (OR=0.793, 95% CI: 0.652-0.965, p=0.020) exerted protective effects on IPF, while Genus Coprococcus2 (OR=1.349, 95% CI: 1.021-1.783, p=0.035) promote the development of IPF. Several taxa were causally associated with lung function, with those in Class Deltaproteobacteria, Order Desulfovibrionales, Family Desulfovibrionaceae, Class Verrucomicrobiae, Order Verrucomicrobiales and Family Verrucomicrobiaceae being the most prominent beneficial microbiota, while those in Family Lachnospiraceae, Genus Oscillospira, and Genus Parasutterella were associated with impaired lung function. As for the reverse analysis, MR results confirmed the effects of FEV1 and FVC on the increased abundance of six taxa (Phylum Actinobacteria, Class Actinobacteria, Order Bifidobacteriales, Family Bifidobacteriaceae, Genus Bifidobacterium, and Genus Ruminiclostridium9) with a boosted level of evidence. MVMR suggested monounsaturated fatty acids, total fatty acids, saturated fatty acids, and ratio of omega-6 fatty acids to total fatty acids as potential mediating factors in the genetic association between gut microbiota and IPF. Conclusion: The current study suggested the casual effects of the specific gut microbes on the risk of IPF and lung function. In turn, lung function also exerted a positive role in some gut microbes. A reasonable dietary intake of lipid substances has a certain protective effect against the occurrence and progression of IPF. This study provides novel insights into the potential role of gut microbiota in IPF and indicates a possible gut microbiota-mediated mechanism for the prevention of IPF.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Lung , Mendelian Randomization Analysis , Humans , Idiopathic Pulmonary Fibrosis/microbiology , Gastrointestinal Microbiome/genetics , Lung/microbiology , Respiratory Function Tests , Genetic Predisposition to Disease
14.
BMC Microbiol ; 24(1): 201, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851693

ABSTRACT

BACKGROUND: People living with HIV (PLWH) are at increased risk of acquisition of multidrug resistant organisms due to higher rates of predisposing factors. The gut microbiome is the main reservoir of the collection of antimicrobial resistance determinants known as the gut resistome. In PLWH, changes in gut microbiome have been linked to immune activation and HIV-1 associated complications. Specifically, gut dysbiosis defined by low microbial gene richness has been linked to low Nadir CD4 + T-cell counts. Additionally, sexual preference has been shown to strongly influence gut microbiome composition in PLWH resulting in different Prevotella or Bacteroides enriched enterotypes, in MSM (men-who-have-sex-with-men) or no-MSM, respectively. To date, little is known about gut resistome composition in PLWH due to the scarcity of studies using shotgun metagenomics. The present study aimed to detect associations between different microbiome features linked to HIV-1 infection and gut resistome composition. RESULTS: Using shotgun metagenomics we characterized the gut resistome composition of 129 HIV-1 infected subjects showing different HIV clinical profiles and 27 HIV-1 negative controls from a cross-sectional observational study conducted in Barcelona, Spain. Most no-MSM showed a Bacteroides-enriched enterotype and low microbial gene richness microbiomes. We did not identify differences in resistome diversity and composition according to HIV-1 infection or immune status. However, gut resistome was more diverse in MSM group, Prevotella-enriched enterotype and gut micorbiomes with high microbial gene richness compared to no-MSM group, Bacteroides-enriched enterotype and gut microbiomes with low microbial gene richness. Additionally, gut resistome beta-diversity was different according to the defined groups and we identified a set of differentially abundant antimicrobial resistance determinants based on the established categories. CONCLUSIONS: Our findings reveal a significant correlation between gut resistome composition and various host variables commonly associated with gut microbiome, including microbiome enterotype, microbial gene richness, and sexual preference. These host variables have been previously linked to immune activation and lower Nadir CD4 + T-Cell counts, which are prognostic factors of HIV-related comorbidities. This study provides new insights into the relationship between antibiotic resistance and clinical characteristics of PLWH.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Adult , Female , Humans , Male , Middle Aged , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Dysbiosis/microbiology , Feces/microbiology , Feces/virology , Gastrointestinal Microbiome/genetics , HIV Infections/microbiology , HIV Infections/virology , HIV Infections/complications , HIV-1/genetics , HIV-1/drug effects , Homosexuality, Male , Metagenomics , Prevotella/genetics , Prevotella/isolation & purification , Sexual Behavior , Spain
15.
PeerJ ; 12: e17450, 2024.
Article in English | MEDLINE | ID: mdl-38860210

ABSTRACT

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Subject(s)
Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Spodoptera , Animals , Gastrointestinal Microbiome/genetics , Spodoptera/microbiology , Spodoptera/genetics , Larva/microbiology , RNA, Ribosomal, 16S/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Bacteria/genetics , Bacteria/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , Enterococcus/genetics , Bacteroides/genetics , Symbiosis
16.
Sci Rep ; 14(1): 13056, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844487

ABSTRACT

Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.


Subject(s)
Interspersed Repetitive Sequences , Rumen , Animals , Cattle , Rumen/microbiology , Interspersed Repetitive Sequences/genetics , Metagenomics/methods , Metagenome , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/classification , Genome, Bacterial , Phylogeny
17.
BMC Microbiol ; 24(1): 202, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851699

ABSTRACT

BACKGROUND: Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS: We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA ß-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS: Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.


Subject(s)
Anti-Bacterial Agents , Bacteroides Infections , Bacteroides , Carbapenems , Humans , Europe , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Bacteroides Infections/microbiology , Bacteroides/genetics , Bacteroides/drug effects , Bacteroides/isolation & purification , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Microbial Sensitivity Tests , Genes, Bacterial/genetics , Intestines/microbiology , Bacterial Proteins/genetics
18.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825966

ABSTRACT

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Subject(s)
Bacteria , Gastrointestinal Tract , Geologic Sediments , RNA, Ribosomal, 16S , Snails , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology , Animals , Snails/microbiology , Germany , Denmark , Gastrointestinal Microbiome/genetics , Water Microbiology , Biodiversity , Estonia , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA
19.
BMC Microbiol ; 24(1): 192, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831399

ABSTRACT

BACKGROUND: HIV-infected persons demonstrate notable disturbances in their intestinal microbiota; however, the impact of intestinal microbiota on HIV susceptibility in men who have sex with men (MSM), as well as the effects of HIV and antiretroviral therapy (ART) on their gut microbiota, remains under active study. Thus, our research focuses on clarifying the distinctions in intestinal microbiota composition among uninfected MSM and non-MSM healthy controls, investigating the alterations in early-stage intestinal microbial communities following HIV infection, and assessing how ART affects the intestinal microbiota. METHODS: This study enrolled four participant groups: uninfected MSM, Recent HIV-1 infection (RHI) MSM, MSM on ART, and non-MSM healthy controls, with 30 individuals in each group. We utilized 16S ribosomal DNA (16S rDNA) amplicon sequencing to analyze fecal microbiota and employed Luminex multiplex assays to measure plasma markers for microbial translocation (LBP, sCD14) and the inflammatory marker CRP. FINDINGS: Comparing uninfected MSM to non-MSM healthy controls, no substantial variances were observed in α and ß diversity. Uninfected MSM had higher average relative abundances of Bacteroidetes, Prevotella, and Alloprevotella, while Bacteroides, Firmicutes, and Faecalibacterium had lower average relative abundances. MSM on ART had lower intestinal microbiota diversity than RHI MSM and uninfected MSM. In MSM on ART, Megasphaera and Fusobacterium increased, while Faecalibacterium and Roseburia decreased at genus level. Additionally, treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) led to significant alterations in intestinal microbiota diversity and composition compared to RHI MSM. The random forest model showed that HIV infection biomarkers effectively distinguished between newly diagnosed HIV-infected MSM and HIV-negative MSM, with an ROC AUC of 76.24% (95% CI: 61.17-91.31%). CONCLUSIONS: MSM showed early intestinal microbiota imbalances after new HIV infection. MSM on ART experienced worsened dysbiosis, indicating a combined effect of HIV and ART. NNRTI-based treatment notably changed intestinal microbiota, suggesting a potential direct impact of NNRTI drugs on intestinal microbiota.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Homosexuality, Male , RNA, Ribosomal, 16S , Humans , Male , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , HIV Infections/microbiology , HIV Infections/drug therapy , HIV Infections/complications , Adult , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Feces/microbiology , Feces/virology , Middle Aged , HIV-1/genetics , Dysbiosis/microbiology
20.
Sci Rep ; 14(1): 12903, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839848

ABSTRACT

Free Fecal Liquid (FFL), also termed Fecal Water Syndrome (FWS), is an ailment in horses characterized by variable solid and liquid (water) phases at defecation. The liquid phase can be excreted before, during, or after the solid defecation phase. While the underlying causes of FFL are unknown, hindgut dysbiosis is suggested to be associated with FFL. Three European studies investigated dysbiosis in horses with FFL using 16S rRNA sequencing and reported results that conflicted between each other. In the present study, we also used 16S rRNA sequencing to study the fecal microbial composition in 14 Canadian horses with FFL, and 11 healthy stable mate controls. We found no significant difference in fecal microbial composition between FFL and healthy horses, which further supports that dysbiosis is not associated with FFL.


Subject(s)
Dysbiosis , Feces , RNA, Ribosomal, 16S , Horses , Animals , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Dysbiosis/veterinary , Horse Diseases/microbiology , Male , Canada , Female , Gastrointestinal Microbiome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...