Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.841
1.
BMC Pulm Med ; 24(1): 275, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858671

BACKGROUND: Whether there are invasive components in pure ground glass nodules(pGGNs) in the lungs is still a huge challenge to forecast. The objective of our study is to investigate and identify the potential biomarker genes for pure ground glass nodule(pGGN) based on the method of bioinformatics analysis. METHODS: To investigate differentially expressed genes (DEGs), firstly the data obtained from the gene expression omnibus (GEO) database was used.Next Weighted gene co-expression network analysis (WGCNA) investigate the co-expression network of DEGs. The black key module was chosen as the key one in correlation with pGGN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were done. Then STRING was uesd to create a protein-protein interaction (PPI) network, and the chosen module genes were analyzed by Cytoscape software.In addition the polymerase chain reaction (PCR) was used to evaluate the value of these hub genes in pGGN patients' tumor tissues compared to controls. RESULTS: A total of 4475 DEGs were screened out from GSE193725, then 225 DEGs were identified in black key module, which were found to be enriched for various functions and pathways, such as extracellular exosome, vesicle, ribosome and so on. Among these DEGs, 6 overlapped hub genes with high degrees of stress method were selected. These hub genes include RPL4, RPL8, RPLP0, RPS16, RPS2 and CCT3.At last relative expression levels of CCT3 and RPL8 mRNA were both regulated in pGGN patients' tumor tissues compared to controls. CONCLUSIONS: To summarize, the determined DEGs, pathways, modules, and overlapped hub genes can throw light on the potential molecular mechanisms of pGGN.


Gene Expression Profiling , Gene Regulatory Networks , Lung Neoplasms , Protein Interaction Maps , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Computational Biology/methods , Databases, Genetic , Gene Expression Regulation, Neoplastic , Solitary Pulmonary Nodule/genetics , Gene Ontology , Biomarkers, Tumor/genetics
2.
Front Endocrinol (Lausanne) ; 15: 1373774, 2024.
Article En | MEDLINE | ID: mdl-38863929

Background: Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods: We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results: COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion: The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.


Asthenozoospermia , Biomarkers , Computational Biology , Gene Regulatory Networks , Humans , Male , Asthenozoospermia/genetics , Asthenozoospermia/metabolism , Computational Biology/methods , Biomarkers/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Signal Transduction/genetics , Spermatozoa/metabolism
3.
PLoS One ; 19(6): e0291583, 2024.
Article En | MEDLINE | ID: mdl-38875180

OBJECTIVE: We aimed to study the involvement of ferroptosis in the pathogenesis of bronchopulmonary dysplasia (BPD) by conducting bioinformatics analyses and identifying and validating the associated ferroptosis-related genes to explore new directions for treating BPD. METHODS: The dataset GSE32472 on BPD was downloaded from the public genome database. Using R language, differentially expressed genes (DEGs) between the BPD and normal group were screened. In the present study, we adopted weighted gene correlation network analysis (WGCNA) for identifying BPD-related gene modules and ferroptosis-related genes were extracted from FerrDb. Their results were intersected to obtain the hub genes. After that, to explore the hub gene-related signaling pathways, the hub genes were exposed to gene ontology enrichment analysis. With the purpose of verifying the mRNA expression of the hub genes, a single-gene gene set enrichment analysis and quantitative reverse transcription polymerase chain reaction were conducted. Immune cell infiltration in BPD was analyzed using the CIBERSORT inverse fold product algorithm. RESULTS: A total of 606 DEGs were screened. WGCNA provided the BPD-related gene module darkgreen4. The intersection of DEGs, intramodular genes, and ferroptosis-related genes revealed six ferroptosis-associated hub genes (ACSL1, GALNT14, WIPI1, MAPK14, PROK2, and CREB5). Receiver operating characteristic curve analysis demonstrated that the hub genes screened for BPD were of good diagnostic significance. According to the results of immune infiltration analysis, the proportions of CD8, CD4 naive, and memory resting T cells and M2 macrophage were elevated in the normal group, and the proportions of M0 macrophage, resting mast cell, and neutrophils were increased in the BPD group. CONCLUSIONS: A total of six ferroptosis-associated hub genes in BPD were identified in this study, and they may be potential new therapeutic targets for BPD.


Bronchopulmonary Dysplasia , Computational Biology , Ferroptosis , Gene Regulatory Networks , Ferroptosis/genetics , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/pathology , Humans , Computational Biology/methods , Gene Expression Profiling , Databases, Genetic , Gene Ontology
4.
PLoS One ; 19(6): e0301647, 2024.
Article En | MEDLINE | ID: mdl-38885209

BACKGROUND: Neuronal ferroptosis is closely related to the disease of the nervous system, and the objective of the present study was to recognize and verify the potential ferroptosis-related genes to forecast the neurological outcome after cardiac arrest. METHODS: Cardiac Arrest-related microarray datasets GSE29540 and GSE92696 were downloaded from GEO and batch normalization of the expression data was performed using "sva" of the R package. GSE29540 was analyzed to identify DEGs. Venn diagram was applied to recognize ferroptosis-related DEGs from the DEGs. Subsequently, The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed, and PPI network was applied to screen hub genes. Receiver operating characteristic (ROC) curves were adopted to determine the predictive value of the biomarkers, and the GSE92696 dataset was applied to further evaluate the diagnostic efficacy of the biomarkers. We explore transcription factors and miRNAs associated with hub genes. The "CIBERSORT" package of R was utilized to analyse the proportion infiltrating immune cells. Finally, validated by a series of experiments at the cellular level. RESULTS: 112 overlapping ferroptosis-related DEGs were further obtained via intersecting these DEGs and ferroptosis-related genes. The GO and KEGG analysis demonstrate that ferroptosis-related DEGs are mainly involved in response to oxidative stress, ferroptosis, apoptosis, IL-17 signalling pathway, autophagy, toll-like receptor signalling pathway. The top 10 hub genes were selected, including HIF1A, MAPK3, PPARA, IL1B, PTGS2, RELA, TLR4, KEAP1, SREBF1, SIRT6. Only MAPK3 was upregulated in both GSE29540 and GAE92696. The AUC values of the MAPK3 are 0.654 and 0.850 in GSE29540 and GSE92696 respectively. The result of miRNAs associated with hub genes indicates that hsa-miR-214-3p and hsa-miR-483-5p can regulate the expression of MAPK3. MAPK3 was positively correlated with naive B cells, macrophages M0, activated dendritic cells and negatively correlated with activated CD4 memory T cells, CD8 T cells, and memory B cells. Compared to the OGD4/R24 group, the OGD4/R12 group had higher MAPK3 expression at both mRNA and protein levels and more severe ferroptosis. CONCLUSION: In summary, the MAPK3 ferroptosis-related gene could be used as a biomarker to predict the neurological outcome after cardiac arrest. Potential biological pathways provide novel insights into the pathogenesis of cardiac arrest.


Ferroptosis , Heart Arrest , Ferroptosis/genetics , Humans , Heart Arrest/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Gene Regulatory Networks , Gene Ontology , Biomarkers/metabolism , MicroRNAs/genetics , ROC Curve
5.
Commun Biol ; 7(1): 744, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898151

Gene set enrichment analysis is foundational to the interpretation of high throughput biology. Identifying enriched Gene Ontology (GO) terms or disease-associated gene sets within a list of gene effect sizes that represent experimental outcomes is an everyday task in life science that crucially depends on robust and sensitive statistical tools. We here present GOAT, a parameter-free algorithm for gene set enrichment analysis of preranked gene lists. The algorithm can precompute null distributions from standardized gene scores, enabling enrichment testing of the GO database in one second. Validations using synthetic data show that estimated gene set p-values are well calibrated under the null hypothesis and invariant to gene list length and gene set size. Application to various real-world proteomics and gene expression studies demonstrates that GOAT identifies more significant GO terms as compared to current methods. GOAT is freely available as an R package and user-friendly online tool for gene set enrichment analyses that includes interactive data visualizations: https://ftwkoopmans.github.io/goat .


Algorithms , Gene Ontology , Humans , Gene Expression Profiling/methods , Animals , Computational Biology/methods , Software , Proteomics/methods , Databases, Genetic
6.
Int Ophthalmol ; 44(1): 244, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38904678

OBJECTIVE: Keratoconus (KC) is a condition characterized by progressive corneal steepening and thinning. However, its pathophysiological mechanism remains vague. We mainly performed literature mining to extract bioinformatic and related data on KC at the RNA level. The objective of this study was to explore the potential pathological mechanisms of KC by identifying hub genes and key molecular pathways at the RNA level. METHODS: We performed an exhaustive search of the PubMed database and identified studies that pertained to gene transcripts derived from diverse corneal layers in patients with KC. The identified differentially expressed genes were intersected, and overlapping genes were extracted for further analyses. Significantly enriched genes were screened using "Gene Ontology" (GO) and "Kyoto Encyclopedia of Genes and Genomes" (KEGG) analysis with the "Database for Annotation, Visualization, and Integrated Discovery" (DAVID) database. A protein-protein interaction (PPI) network was constructed for the significantly enriched genes using the STRING database. The PPI network was visualized using the Cytoscape software, and hub genes were screened via betweenness centrality values. Pathways that play a critical role in the pathophysiology of KC were discovered using the GO and KEGG analyses of the hub genes. RESULTS: 68 overlapping genes were obtained. Fifty genes were significantly enriched in 67 biological processes, and 16 genes were identified in 7 KEGG pathways. Moreover, 14 nodes and 32 edges were identified via the PPI network constructed using the STRING database. Multiple analyses identified 4 hub genes, 12 enriched biological processes, and 6 KEGG pathways. GO enrichment analysis showed that the hub genes are mainly involved in the positive regulation of apoptotic process, and KEGG analysis showed that the hub genes are primarily associated with the interleukin-17 (IL-17) and tumor necrosis factor (TNF) pathways. Overall, the matrix metalloproteinase 9, IL-6, estrogen receptor 1, and prostaglandin-endoperoxide synthase 2 were the potential important genes associated with KC. CONCLUSION: Four genes, matrix metalloproteinase 9, IL-6, estrogen receptor 1, and prostaglandin endoperoxide synthase 2, as well as IL-17 and TNF pathways, are critical in the development of KC. Inflammation and apoptosis may contribute to the pathogenesis of KC.


Computational Biology , Data Mining , Gene Regulatory Networks , Keratoconus , Keratoconus/genetics , Keratoconus/metabolism , Keratoconus/diagnosis , Humans , Computational Biology/methods , Data Mining/methods , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , RNA/genetics , Gene Expression Regulation , Gene Ontology , Databases, Genetic
7.
BMC Med Genomics ; 17(1): 162, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38890701

BACKGROUND: The present study aims to identify the differential miRNA expression profile in middle ear cholesteatoma and explore their potential roles in its pathogenesis. METHODS: Cholesteatoma and matched normal retroauricular skin tissue samples were collected from patients diagnosed with acquired middle ear cholesteatoma. The miRNA expression profiling was performed using small RNA sequencing, which further validated by quantitative real-time PCR (qRT-PCR). Target genes of differentially expressed miRNAs in cholesteatoma were predicted. The interaction network of 5 most significantly differentially expressed miRNAs was visualized using Cytoscape. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses were processed to investigate the biological functions of miRNAs in cholesteatoma. RESULTS: The miRNA expression profile revealed 121 significantly differentially expressed miRNAs in cholesteatoma compared to normal skin tissues, with 56 upregulated and 65 downregulated. GO and KEGG pathway enrichment analyses suggested their significant roles in the pathogenesis of cholesteatoma. The interaction network of the the 2 most upregulated (hsa-miR-21-5p and hsa-miR-142-5p) and 3 most downregulated (hsa-miR-508-3p, hsa-miR-509-3p and hsa-miR-211-5p) miRNAs identified TGFBR2, MBNL1, and NFAT5 as potential key target genes in middle ear cholesteatoma. CONCLUSIONS: This study provides a comprehensive miRNA expression profile in middle ear cholesteatoma, which may aid in identifying therapeutic targets for its management.


Cholesteatoma, Middle Ear , Gene Expression Profiling , MicroRNAs , Humans , MicroRNAs/genetics , Cholesteatoma, Middle Ear/genetics , Cholesteatoma, Middle Ear/pathology , Gene Regulatory Networks , Sequence Analysis, RNA , Male , Female , Gene Ontology , Adult , Middle Aged , Transcriptome , Receptor, Transforming Growth Factor-beta Type II/genetics
8.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824241

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
9.
J Cell Mol Med ; 28(11): e18447, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837574

The purpose of this study was to identify the mechanisms underlying the involvement of glycolytic genes in pulmonary arterial hypertension (PAH). This study involved downloading 3 datasets from the GEO database at the National Center for Biotechnology Information. The datasets were processed to obtain expression matrices for analysis. Genes involved in glycolysis-related pathways were obtained, and genes related to glycolysis were selected based on significant differences in expression. Gene Ontology functional annotation analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and GSEA enrichment analysis were performed on the DEGs. Combining LASSO regression with SVM-RFE machine learning technology, a PAH risk prediction model based on glycolysis related gene expression was constructed, and CIBERSORTx technology was used to analyse the immune cell composition of PAH patients. Gene enrichment analysis revealed that the DEGs work synergistically across multiple biological pathways. A total of 6 key glycolysis-related genes were selected using LASSO regression and SVM. A bar plot was constructed to evaluate the weights of the key genes and predict the risk of PAH. The clinical application value and predictive accuracy of the model were assessed. Immunological feature analysis revealed significant correlations between key glycolysis-related genes and the abundances of different immune cell types. The glycolysis genes (ACSS2, ALAS2, ALDH3A1, ADOC3, NT5E, and TALDO1) identified in this study play important roles in the development of pulmonary arterial hypertension, providing new evidence for the involvement of glycolysis in PAH.


Computational Biology , Glycolysis , Pulmonary Arterial Hypertension , Humans , Glycolysis/genetics , Computational Biology/methods , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Gene Ontology , Gene Expression Regulation , Databases, Genetic
10.
Parasit Vectors ; 17(1): 250, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849919

BACKGROUND: Flea bites could trigger a series of complex molecular responses in the host. However, our understanding of the responses at the molecular level is still relatively limited. This study quantifies the changes in gene expression in mice after flea bites by RNA sequencing (RNA-seq) from their spleens, revealing the potential biological effects of host response to flea bites. METHODS: RNA-seq was used for transcriptome analysis to screen for differentially expressed genes (DEGs) between the control mice group and the flea bite mice group. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on DEGs. Protein-protein interaction (PPI) network analysis on DEGs related to immune processes was performed. Finally, we randomly selected several genes from the screened DEGs to validate the results from the transcriptome data by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: A total of 521 DEGs were identified, including 277 upregulated and 244 downregulated. There were 258 GO terms significantly enriched by upregulated DEGs and 419 GO terms significantly enriched by downregulated DEGs. Among the upregulated DEGs, 22 GO terms were associated with immune cells (e.g., B cells and T cells) and immune regulatory processes, while among the downregulated DEGs, 58 GO terms were associated with immune cells and immune regulatory processes. Through PPI analysis, we found that CD40 molecules with significantly downregulated expression levels after flea bites may play an important role in host immune regulation. Through KEGG pathway enrichment analysis, a total of 26 significantly enriched KEGG pathways were identified. The RT-qPCR analysis results indicated that the transcriptome sequencing results were reliable. CONCLUSIONS: Through in-depth analysis of transcriptome changes in mice caused by flea bites, we revealed that flea bites could stimulate a series of biological and immunological responses in mice. These findings not only provided a deeper understanding of the impact of flea bites on the host but also provided a basis for further research on the interaction between ectoparasites and the host. We believe that digging deeper into the significance of these transcriptome changes will help reveal more about the adaptive response of the host to ectoparasites.


Gene Expression Profiling , Transcriptome , Xenopsylla , Animals , Mice , Xenopsylla/genetics , Insect Bites and Stings/immunology , Gene Ontology , Protein Interaction Maps , Spleen/immunology , Spleen/metabolism , Female , Sequence Analysis, RNA
11.
Medicine (Baltimore) ; 103(23): e38470, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847690

Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and adolescents. Improvements in our understanding of the OS pathogenesis and metastatic mechanism on the molecular level might lead to notable advances in the treatment and prognosis of OS. Biomarkers related to OS metastasis and prognosis were analyzed and identified, and a prognostic model was established through the integration of bioinformatics tools and datasets in multiple databases. 2 OS datasets were downloaded from the Gene Expression Omnibus database for data consolidation, standardization, batch effect correction, and identification of differentially expressed genes (DEGs); following that, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DEGs; the STRING database was subsequently used for protein-protein interaction (PPI) network construction and identification of hub genes; hub gene expression was validated, and survival analysis was conducted through the employment of the TARGET database; finally, a prognostic model was established and evaluated subsequent to the screening of survival-related genes. A total of 701 DEGs were identified; by gene ontology and KEGG pathway enrichment analyses, the overlapping DEGs were enriched for 249 biological process terms, 13 cellular component terms, 35 molecular function terms, and 4 KEGG pathways; 13 hub genes were selected from the PPI network; 6 survival-related genes were identified by the survival analysis; the prognostic model suggested that 4 genes were strongly associated with the prognosis of OS. DEGs related to OS metastasis and survival were identified through bioinformatics analysis, and hub genes were further selected to establish an ideal prognostic model for OS patients. On this basis, 4 protective genes including TPM1, TPM2, TPM3, and TPM4 were yielded by the prognostic model.


Bone Neoplasms , Computational Biology , Osteosarcoma , Protein Interaction Maps , Osteosarcoma/genetics , Osteosarcoma/mortality , Osteosarcoma/pathology , Humans , Computational Biology/methods , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Protein Interaction Maps/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods , Gene Ontology , Databases, Genetic , Survival Analysis , Neoplasm Metastasis/genetics
12.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874856

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Salvia , Transcriptome , Transcriptome/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Biosynthetic Pathways/genetics , Salvia/genetics , Salvia/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Molecular Sequence Annotation , Gene Ontology , High-Throughput Nucleotide Sequencing/methods , Propanols/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Secondary Metabolism/genetics
13.
BMC Genomics ; 25(1): 591, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867206

BACKGROUND: The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS: Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS: The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.


Crassostrea , Cryopreservation , Cryoprotective Agents , Gene Expression Profiling , Larva , Animals , Crassostrea/genetics , Crassostrea/growth & development , Cryoprotective Agents/pharmacology , Cryoprotective Agents/toxicity , Larva/genetics , Larva/drug effects , Larva/growth & development , Transcriptome , Gene Ontology
14.
Sci Rep ; 14(1): 12749, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830963

Keratoconus is corneal disease in which the progression of conical dilation of cornea leads to reduced visual acuity and even corneal perforation. However, the etiology mechanism of keratoconus is still unclear. This study aims to identify the signature genes related to cell death in keratoconus and examine the function of these genes. A dataset of keratoconus from the GEO database was analysed to identify the differentially expressed genes (DEGs). A total of 3558 DEGs were screened from GSE151631. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they mainly involved in response to hypoxia, cell-cell adhesion, and IL-17 signaling pathway. Then, the cell death-related genes datasets were intersected with the above 3558 DEGs to obtain 70 ferroptosis-related DEGs (FDEGs), 32 autophagy-related DEGs (ADEGs), six pyroptosis-related DEGs (PDEGs), four disulfidptosis-related DEGs (DDEGs), and one cuproptosis-related DEGs (CDEGs). After using Least absolute shrinkage and selection operator (LASSO), Random Forest analysis, and receiver operating characteristic (ROC) curve analysis, one ferroptosis-related gene (TNFAIP3) and five autophagy-related genes (CDKN1A, HSPA5, MAPK8IP1, PPP1R15A, and VEGFA) were screened out. The expressions of the above six genes were significantly decreased in keratoconus and the area under the curve (AUC) values of these genes was 0.944, 0.893, 0.797, 0.726, 0.882 and 0.779 respectively. GSEA analysis showed that the above six genes mainly play an important role in allograft rejection, asthma, and circadian rhythm etc. In conclusion, the results of this study suggested that focusing on these genes and autoimmune diseases will be a beneficial perspective for the keratoconus etiology research.


Computational Biology , Gene Expression Profiling , Keratoconus , Keratoconus/genetics , Keratoconus/pathology , Humans , Computational Biology/methods , Gene Ontology , Cell Death/genetics , Gene Regulatory Networks , Ferroptosis/genetics , Databases, Genetic , Transcriptome , Protein Interaction Maps/genetics
15.
Sci Rep ; 14(1): 13943, 2024 06 17.
Article En | MEDLINE | ID: mdl-38886539

Type 2 diabetes mellitus combined with metabolic dysfunction-associated steatotic liver disease (MASLD) leads to an increasing incidence of liver injury year by year, and patients are at a significantly higher risk of developing cirrhosis or even liver failure. No drugs have emerged to specifically treat this disease. The aim of this study is to investigate the mechanisms and causative hub genes of type 2 diabetes combined with MASLD. The data were obtained through the GEO platform for bioinformatics analysis and validated by in vitro experiments to find the causative targets of type 2 diabetes mellitus combined with MASLD, which will provide some theoretical basis for the development of future therapeutic drugs. GSE23343 and GSE49541 were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) in type 2 diabetes mellitus combined with MASLD for functional enrichment analysis. And STRING database and Cytoscape software were used to construct Protein-Protein Interaction (PPI) and hub gene networks. And GO (gene ontology, GO) analysis and KEGG (Kyoto encyclopedia of genes and genomes, KEGG) enrichment analysis were performed on target genes. A total of 185 co-expressed DEGs were obtained by differential analysis, and 20 key genes involved in the development and progression of type 2 diabetes were finally screened. These 20 key genes were involved in 529 GO enrichment results and 20 KEGG enrichment results, and were mainly associated with ECM-receptor interaction, Focal adhesion, Human papillomavirus infection, PI3K-Akt signaling pathway, and the Toll-like receptor signaling pathway. A total of two target genes (SPP1, collagen IV) were found to be highly correlated with type 2 diabetes mellitus combined with MASLD. Real time PCR results showed that there was a significant difference in SPP1 and collagen IV mRNA expression among the three groups (P < 0.05). SPP1 and Collagen IV may be candidate biomarkers for type 2 diabetes mellitus combined with MASLD, as verified by bioinformatics screening and in vitro experiments. Our findings provide new targets for the treatment of type 2 diabetes combined with MASLD.


Collagen Type IV , Diabetes Mellitus, Type 2 , Osteopontin , Protein Interaction Maps , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Animals , Rats , Collagen Type IV/genetics , Collagen Type IV/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Gene Regulatory Networks , Disease Models, Animal , Computational Biology/methods , Gene Expression Profiling , Male , Humans , Gene Ontology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction
16.
Int J Mol Sci ; 25(11)2024 May 21.
Article En | MEDLINE | ID: mdl-38891802

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.


Gene Expression Regulation, Plant , Glycine max , Seeds , Glycine max/genetics , Glycine max/metabolism , Seeds/genetics , Seeds/metabolism , Chromosomes, Plant/genetics , Gene Regulatory Networks , Plant Breeding/methods , Gene Expression Profiling/methods , Gene Ontology , Transcriptome/genetics , Multiomics
17.
Int J Mol Sci ; 25(11)2024 May 30.
Article En | MEDLINE | ID: mdl-38892181

Potato (Solanum tuberosum L.) is a major global food crop, and oxidative stress can significantly impact its growth. Previous studies have shown that its resistance to oxidative stress is mainly related to transcription factors, post-translational modifications, and antioxidant enzymes in vivo, but the specific molecular mechanisms remain unclear. In this study, we analyzed the transcriptome data from potato leaves treated with H2O2 and Methyl viologen (MV), and a control group, for 12 h. We enriched 8334 (CK vs. H2O2) and 4445 (CK vs. MV) differentially expressed genes (DEGs), respectively, and randomly selected 15 DEGs to verify the sequencing data by qRT-PCR. Gene ontology (GO) enrichment analysis showed that the DEGs were mainly concentrated in cellular components and related to molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that most of the DEGs were related to metabolic pathways, plant hormone signal transduction, MAPK-signaling pathway, and plant-pathogen interactions. In addition, several candidate transcription factors, mainly including MYB, WRKY, and genes associated with Ca2+-mediated signal transduction, were also found to be differentially expressed. Among them, the plant hormone genes Soltu.DM.03G022780 and Soltu.DM.06G019360, the CNGC gene Soltu.DM.06G006320, the MYB transcription factors Soltu.DM.06G004450 and Soltu.DM.09G002130, and the WRKY transcription factor Soltu.DM.06G020440 were noticeably highly expressed, which indicates that these are likely to be the key genes in the regulation of oxidative stress tolerance. Overall, these findings lay the foundation for further studies on the molecular mechanisms of potato leaves in response to oxidative stress.


Gene Expression Profiling , Gene Expression Regulation, Plant , Oxidative Stress , Plant Leaves , Solanum tuberosum , Transcriptome , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling/methods , Gene Ontology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
BMC Med Genomics ; 17(1): 167, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902760

OBJECTIVE: To identify differentially expressed long noncoding RNAs (lncRNAs) in condyloma acuminatum (CA) and to explore their probable regulatory mechanisms by establishing coexpression networks. METHODS: High-throughput RNA sequencing was performed to assess genome-wide lncRNA expression in CA and paired adjacent mucosal tissue. The expression of candidate lncRNAs and their target genes in larger CA specimens was validated using real-time quantitative reverse transcriptase polymerase chain reaction (RT‒qPCR). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for the functional enrichment analysis of these candidate lncRNAs and differential mRNAs. The coexpressed mRNAs of the candidate lncRNAs, calculated by Pearson's correlation coefficient, were also analysed using GO and KEGG analysis. In addition, the interactions among differentially expressed lncRNAs (DElncRNAs)-cis-regulatory transcription factors (cisTFs)-differentially expressed genes (DEGs) were analysed and their network was constructed. RESULTS: A total of 546 lncRNAs and 2553 mRNAs were found to be differentially expressed in CA compared to the paired control. Functional enrichment analysis revealed that the DEGs coexpressed with DElncRNAs were enriched in the terms of cell adhesion and keratinocyte differentiation, and the pathways of ECM-receptor interaction, local adhesion, PI3K/AKT and TGF-ß signaling. We further constructed the network among DElncRNAs-cisTFs-DEGs and found that these 95 DEGs were mainly enriched in GO terms of epithelial development, regulation of transcription or gene expression. Furthermore, the expression of 3 pairs of DElncRNAs and cisTFs, EVX1-AS and HOXA13, HOXA11-AS and EVX1, and DLX6-AS and DLX5, was validated with a larger number of specimens using RT‒qPCR. CONCLUSION: CA has a specific lncRNA profile, and the differentially expressed lncRNAs play regulatory roles in mRNA expression through cis-acting TFs, which provides insight into their regulatory networks. It will be useful to understand the pathogenesis of CA to provide new directions for the prevention, clinical treatment and efficacy evaluation of CA.


Condylomata Acuminata , Gene Regulatory Networks , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Condylomata Acuminata/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , Male , Gene Ontology , Female , Adult
19.
Medicine (Baltimore) ; 103(25): e38315, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38905402

Gegensan (GGS) has been reported for the treatment of alcoholic liver disease (ALD), but its therapeutic mechanism is still unclear. This paper aims to determine the therapeutic mechanism and targets of action of GGS on alcoholic liver disease utilizing network pharmacology and bioinformatics. The active ingredients in GGS were screened in the literature and databases, and common targets of ALD were then obtained from public databases to construct the network diagram of traditional Chinese medicine-active ingredient targets. Based on the common targets, Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to find target enrichment pathways, and the core targets were screened out by combining differential analysis and protein-protein interaction network analysis. Molecular docking was performed to verify the binding effect between the core targets and the corresponding active ingredients. ALD and GGS have 84 common targets, corresponding to 91 active ingredients. After subsequent differential analysis and protein-protein interaction network analysis, 10 core targets were identified. Gene Ontology and KEGG enrichment analyses showed that the main BPs corresponding to the common targets included the response to lipopolysaccharide, inflammatory response, etc. The KEGG pathways involved in the regulation of the common targets included the lipid-atherosclerosis pathway and the alcoholic liver disease pathway, etc. Further molecular docking showed that the core targets CYP1A1, CYP1A2, CXCL8, ADH1C, MMP1, SERPINE1, COL1A1, APOB, MMP1, and their corresponding 4 active ingredients, Naringenin, Kaempferol, Quercetin, and Stigmasterol, have a greater docking potential. The above results suggest that GGS can regulate lipid metabolism and inflammatory response in the ALD process, and alleviate the lipid accumulation and oxidative stress caused by ethanol. This study analyzed the core targets and mechanisms of action of GGS on ALD, which provides certain theoretical support for the further development of GGS in the treatment of ALD, and provides a reference for the subsequent research on the treatment of ALD.


Computational Biology , Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Network Pharmacology/methods , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Computational Biology/methods , Medicine, Chinese Traditional/methods , Gene Ontology
20.
Methods Mol Biol ; 2822: 263-290, 2024.
Article En | MEDLINE | ID: mdl-38907924

RNA-Seq data analysis stands as a vital part of genomics research, turning vast and complex datasets into meaningful biological insights. It is a field marked by rapid evolution and ongoing innovation, necessitating a thorough understanding for anyone seeking to unlock the potential of RNA-Seq data. In this chapter, we describe the intricate landscape of RNA-seq data analysis, elucidating a comprehensive pipeline that navigates through the entirety of this complex process. Beginning with quality control, the chapter underscores the paramount importance of ensuring the integrity of RNA-seq data, as it lays the groundwork for subsequent analyses. Preprocessing is then addressed, where the raw sequence data undergoes necessary modifications and enhancements, setting the stage for the alignment phase. This phase involves mapping the processed sequences to a reference genome, a step pivotal for decoding the origins and functions of these sequences.Venturing into the heart of RNA-seq analysis, the chapter then explores differential expression analysis-the process of identifying genes that exhibit varying expression levels across different conditions or sample groups. Recognizing the biological context of these differentially expressed genes is pivotal; hence, the chapter transitions into functional analysis. Here, methods and tools like Gene Ontology and pathway analyses help contextualize the roles and interactions of the identified genes within broader biological frameworks. However, the chapter does not stop at conventional analysis methods. Embracing the evolving paradigms of data science, it delves into machine learning applications for RNA-seq data, introducing advanced techniques in dimension reduction and both unsupervised and supervised learning. These approaches allow for patterns and relationships to be discerned in the data that might be imperceptible through traditional methods.


Computational Biology , RNA-Seq , Software , RNA-Seq/methods , Humans , Computational Biology/methods , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Genomics/methods , Data Analysis , Gene Ontology , High-Throughput Nucleotide Sequencing/methods
...