Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60.494
1.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824228

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Arachis , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Arachis/genetics , Arachis/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Genetic Markers , Plant Breeding/methods , Basidiomycota/pathogenicity , Basidiomycota/physiology , Plant Leaves/genetics , Plant Leaves/microbiology , Quantitative Trait Loci/genetics , Genes, Plant/genetics , Chromosome Mapping/methods
2.
Theor Appl Genet ; 137(7): 147, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834870

KEY MESSAGE: Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.


Chromosome Mapping , Chromosomes, Plant , Haplotypes , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Chromosome Mapping/methods , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development , Seeds/growth & development , Seeds/genetics , Plant Breeding , Alleles , Genes, Plant
3.
J Clin Invest ; 134(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828726

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Adaptor Proteins, Signal Transducing , Down Syndrome , Endothelial Cells , Humans , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Female , Endothelial Cells/metabolism , Endothelial Cells/pathology , Phenotype , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Genetic Markers , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Wnt Signaling Pathway
4.
PLoS One ; 19(6): e0302313, 2024.
Article En | MEDLINE | ID: mdl-38829862

The aquatic perennial herb Sagittaria trifolia L. commonly known as arrowhead, has been utilized in China both as a culinary vegetable and in traditional medicines. Characterizing the phylogenetic relationships and genetic diversity of arrowheads is crucial for improved management, conservation, and efficient utilization of the germplasm resources associated with this species. Herein, we presented the phenotypic traits and genome-wide DNA marker-based analyses of 111 arrowhead accessions, most of which were from China. Cluster analysis revealed that arrowhead could be categorized into two clusters based on 11 phenotypic traits, with Cluster 1 comprising two subclusters. All accessions were clustered into three sub-clusters based primarily on leaf shape and tuber weight. A set of 759,237 high-quality single-nucleotide polymorphisms was identified and used to assess the phylogenetic relationships. Population structure and phylogenetic tree analyses suggested that the accessions could be classified into two major groups, Group I was further subdivided into two subgroups, aligning with the clusters identified through morphological classification. By employing Sagittaria lichuanensis as an outgroup, the rooted tree revealed that the evolutionary relationships within the three groups followed a progression from Group I-1 to Group I-2 and finally to Group II. The landraces were clustered into one group along with the remaining wild accessions. The level of genetic diversity for Group I (π = 0.26) was slightly lower than that which was estimated for Group II (π = 0.29). The lowest pairwise differentiation levels (Fst, 0.008) were obtained from the comparison between groups I-2 and II, indicating that the two groups were the most closely related. This study provides novel insights into germplasm classification, evolutionary relationships, genomics and arrowhead breeding.


Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Sagittaria , Sagittaria/genetics , Sagittaria/classification , Sagittaria/anatomy & histology , Genetic Variation , China , Genetic Markers
5.
BMC Cardiovasc Disord ; 24(1): 242, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724937

BACKGROUND: Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that increases the risk of morbidity and mortality by disrupting cardiac innervation. Recent evidence suggests that CAN may manifest even before the onset of DM, with prediabetes and metabolic syndrome potentially serving as precursors. This study aims to identify genetic markers associated with CAN development in the Kazakh population by investigating the SNPs of specific genes. MATERIALS AND METHODS: A case-control study involved 82 patients with CAN (cases) and 100 patients without CAN (controls). A total of 182 individuals of Kazakh nationality were enrolled from a hospital affiliated with the RSE "Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan". 7 SNPs of genes FTO, PPARG, SNCA, XRCC1, FLACC1/CASP8 were studied. Statistical analysis was performed using Chi-square methods, calculation of odds ratios (OR) with 95% confidence intervals (CI), and logistic regression in SPSS 26.0. RESULTS: Among the SNCA gene polymorphisms, rs2737029 was significantly associated with CAN, almost doubling the risk of CAN (OR 2.03(1.09-3.77), p = 0.03). However, no statistically significant association with CAN was detected with the rs2736990 of the SNCA gene (OR 1.00 CI (0.63-1.59), p = 0.99). rs12149832 of the FTO gene increased the risk of CAN threefold (OR 3.22(1.04-9.95), p = 0.04), while rs1801282 of the PPARG gene and rs13016963 of the FLACC1 gene increased the risk twofold (OR 2.56(1.19-5.49), p = 0.02) and (OR 2.34(1.00-5.46), p = 0.05) respectively. rs1108775 and rs1799782 of the XRCC1 gene were associated with reduced chances of developing CAN both before and after adjustment (OR 0.24, CI (0.09-0.68), p = 0.007, and OR 0.43, CI (0.22-0.84), p = 0.02, respectively). CONCLUSION: The study suggests that rs2737029 (SNCA gene), rs12149832 (FTO gene), rs1801282 (PPARG gene), and rs13016963 (FLACC1 gene) may be predisposing factors for CAN development. Additionally, SNPs rs1108775 and rs1799782 (XRCC1 gene) may confer resistance to CAN. Only one polymorphism rs2736990 of the SNCA gene was not associated with CAN.


Genetic Predisposition to Disease , PPAR gamma , Polymorphism, Single Nucleotide , Humans , Male , Middle Aged , Female , Case-Control Studies , Kazakhstan/epidemiology , Risk Factors , PPAR gamma/genetics , Aged , Phenotype , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Risk Assessment , Genetic Association Studies , X-ray Repair Cross Complementing Protein 1/genetics , Heart Diseases/genetics , Heart Diseases/ethnology , Heart Diseases/diagnosis , Autonomic Nervous System Diseases/genetics , Autonomic Nervous System Diseases/diagnosis , Adult , Diabetic Neuropathies/genetics , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/ethnology , Diabetic Neuropathies/epidemiology , Autonomic Nervous System/physiopathology , Genetic Markers , alpha-Synuclein
6.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733416

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Chromosome Mapping , Colletotrichum , Cucumis sativus , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Cucumis sativus/microbiology , Cucumis sativus/genetics , Colletotrichum/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genetic Markers , Phenotype , Genetic Linkage , Genes, Plant , Plant Breeding
7.
Sci Rep ; 14(1): 10315, 2024 05 05.
Article En | MEDLINE | ID: mdl-38705879

Several studies have shown an association between prostate carcinoma (PCa) and Epstein-Barr virus (EBV); however, none of the studies so far have identified the histopathological and genetic markers of cancer aggressiveness associated with EBV in PCa tissues. In this study, we used previously characterized EBV-PCR-positive (n = 39) and EBV-negative (n = 60) PCa tissues to perform an IHC-based assessment of key histopathological and molecular markers of PCa aggressiveness (EMT markers, AR expression, perineural invasion, and lymphocytic infiltration characterization). Additionally, we investigated the differential expression of key oncogenes, EMT-associated genes, and PCa-specific oncomiRs, in EBV-positive and -negative tissues, using the qPCR array. Finally, survival benefit analysis was also performed in EBV-positive and EBV-negative PCa patients. The EBV-positive PCa exhibited a higher percentage (80%) of perineural invasion (PNI) compared to EBV-negative PCa (67.3%) samples. Similarly, a higher lymphocytic infiltration was observed in EBV-LMP1-positive PCa samples. The subset characterization of T and B cell lymphocytic infiltration showed a trend of higher intratumoral and tumor stromal lymphocytic infiltration in EBV-negative tissues compared with EBV-positive tissues. The logistic regression analysis showed that EBV-positive status was associated with decreased odds (OR = 0.07; p-value < 0.019) of CD3 intratumoral lymphocytic infiltration in PCa tissues. The analysis of IHC-based expression patterns of EMT markers showed comparable expression of all EMT markers, except vimentin, which showed higher expression in EBV-positive PCa tissues compared to EBV-negative PCa tissues. Furthermore, gene expression analysis showed a statistically significant difference (p < 0.05) in the expression of CDH1, AR, CHEK-2, CDKN-1B, and CDC-20 and oncomiRs miR-126, miR-152-3p, miR-452, miR-145-3p, miR-196a, miR-183-3p, and miR-146b in EBV-positive PCa tissues compared to EBV-negative PCa tissues. Overall, the survival proportion was comparable in both groups. The presence of EBV in the PCa tissues results in an increased expression of certain oncogenes, oncomiRs, and EMT marker (vimentin) and a decrease in CD3 ITL, which may be associated with the aggressive forms of PCa.


Biomarkers, Tumor , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/virology , Prostatic Neoplasms/mortality , Prostatic Neoplasms/metabolism , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/complications , Biomarkers, Tumor/genetics , Aged , Gene Expression Regulation, Neoplastic , Genetic Markers , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Epithelial-Mesenchymal Transition/genetics , Neoplasm Invasiveness
8.
Braz J Biol ; 84: e282495, 2024.
Article En | MEDLINE | ID: mdl-38747865

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Oryza , Plant Breeding , Stress, Physiological , Oryza/genetics , Oryza/microbiology , Oryza/physiology , Stress, Physiological/genetics , Disease Resistance/genetics , Quantitative Trait Loci/genetics , Genotype , Genetic Markers , Plant Diseases/genetics , Plant Diseases/microbiology , Cold Temperature
9.
Theor Appl Genet ; 137(6): 131, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748046

KEY MESSAGE: Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.


Phenotype , Polymorphism, Single Nucleotide , Triticum , Triticum/genetics , Triticum/growth & development , Genome-Wide Association Study , Quantitative Trait Loci , Alleles , Plant Breeding , Genome, Plant , Genetic Association Studies , Selection, Genetic , Genotype , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development
10.
BMC Plant Biol ; 24(1): 412, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760706

Under greenhouse conditions, the resistance of 18 different genotypes of flax to powdery mildew was evaluated. To investigate genetic diversity and identify the molecular and biochemical markers linked to powdery mildew resistance in the tested genotypes, two molecular marker systems-start codon targeted (SCoT) and inter-simple sequence repeat (ISSR)-as well as a biochemical marker (protein profiles, antioxidant enzyme activity, and secondary metabolites) were used. Based on the results, the genotypes were classified into four categories: highly susceptible, susceptible, moderately susceptible, and moderately resistant. The genotypes differed significantly in powdery mildew severity: Polk had a severity of 92.03% and Leona had a severity of 18.10%. Compared to the other genotypes, the moderately resistant genotypes had higher levels of flavonoids, antioxidant enzymes, phenolics, and straw yield; nevertheless, their hydrogen peroxide and malondialdehyde levels were lower. Protein profiles revealed 93.75% polymorphism, although the ISSR marker displayed more polymorphism (78.4%) than the SCoT marker (59.7%). Specific molecular and biochemical markers associated with powdery mildew resistance were identified. The 18 genotypes of flax were divided into two major clusters by the dendrogram based on the combined data of molecular markers. The first main cluster included Leona (genotype number 7), considered moderate resistance to powdery mildew and a separate phenetic line. The second main cluster included the other 17 genotypes, which are grouped together in a sub-cluster. This means that, besides SCoT, ISSR markers can be a useful supplementary technique for molecular flax characterization and for identifying genetic associations between flax genotypes under powdery mildew infection.


Disease Resistance , Flax , Genetic Variation , Genotype , Plant Diseases , Flax/genetics , Flax/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genetic Markers , Ascomycota/physiology , Biomarkers/metabolism
11.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760849

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
12.
BMC Plant Biol ; 24(1): 395, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745139

BACKGROUND: In common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles. RESULTS: By integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7 OE, Glu-1Bx13, Glu-1Bx14 (-) , Glu-1Bx14 (+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14 (+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14 (+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14 (-), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14 (+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis. CONCLUSIONS: Seven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.


Alleles , Glutens , Polymerase Chain Reaction , Triticum , Glutens/genetics , Glutens/metabolism , Triticum/genetics , Genetic Markers , Polymerase Chain Reaction/methods , Molecular Weight
13.
PLoS One ; 19(5): e0302870, 2024.
Article En | MEDLINE | ID: mdl-38776345

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Genome, Plant , Genotype , INDEL Mutation , Lens Plant , Quantitative Trait Loci , Lens Plant/genetics , Lens Plant/growth & development , Genetic Markers , Polymerase Chain Reaction/methods , Chromosome Mapping/methods
14.
Int J Med Mushrooms ; 26(5): 43-57, 2024.
Article En | MEDLINE | ID: mdl-38780422

Wild resources of Auricularia cornea (A. polytricha) are abundant in China, and genetic diversity and genetic relationships analysis of A. cornea can provide basis for germplasm resource utilization and innovation and molecular marker-assisted breeding. In this study, 22 Auricularia strains collected were identified as A. cornea based on ITS sequence analysis, and its genetic diversity was examined by ISSR and SRAP markers. The results showed that a total of 415 bands were amplified by 11 selected ISSR primers, with an average amplification of 37.73 bands per primer, and the mean values of Ne, I, and H were 1.302, 0.368, and 0.219, respectively. A total of 450 bands were amplified by 10 SRAP primers, with an average of 45 bands per primer, and the average of Ne, I, and H were 1.263, 0.302, and 0.183, respectively. The unweighted pair-group method with arithmetic means analysis based on ISSR-SRAP marker data revealed that the genetic similarity coefficient between the tested strains was 0.73-0.97, and the strains could be divided into five groups at 0.742, which had a certain correlation with regional distribution. The results of PCOA and population structure analysis based on ISSR-SRAP data also produced similar results. These results demonstrate the genetic diversity and distinctness among wild A. cornea and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of A. cornea resources.


Basidiomycota , Genetic Variation , China , Basidiomycota/genetics , Basidiomycota/classification , Genetic Markers , Phylogeny , DNA, Fungal/genetics , Microsatellite Repeats , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
15.
Sci Rep ; 14(1): 11820, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783007

Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.


Genome, Chloroplast , Phylogeny , Genomics/methods , Genetic Markers , Chloroplasts/genetics , Base Composition , Microsatellite Repeats/genetics
16.
Sci Rep ; 14(1): 12340, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811679

Auricularia heimuer, the third most frequently cultivated edible mushroom species worldwide, has high medicinal value. However, a shortage of molecular marker hinders the efficiency and accuracy of genetic breeding efforts for A. heimuer. High-throughput transcriptome sequencing data are essential for gene discovery and molecular markers development. This study aimed to clarify the distribution of SSR loci across the A. heimuer transcriptome and to develop highly informative EST-SSR markers. These tools can be used for phylogenetic analysis, functional gene mining, and molecular marker-assisted breeding of A. heimuer. This study used Illumina high-throughput sequencing technology to obtain A. heimuer transcriptome data. The results revealed 37,538 unigenes in the A. heimuer transcriptome. Of these unigenes, 24,777 (66.01%) were annotated via comparison with the COG, Pfam, and NR databases. Overall, 2510 SSRs were identified from the unigenes, including 6 types of SSRs. The most abundant type of repeats were trinucleotides (1425, 56.77%), followed by mononucleotides (391, 15.58%) and dinucleotides (456, 18.17%). Primer pairs for 102 SSR loci were randomly designed for validity confirmation and polymorphism identification; this process yielded 53 polymorphic EST-SSR markers. Finally, 13 pairs of highly polymorphic EST-SSR primers were used to analyze the genetic diversity and population structure of 52 wild A. heimuer germplasms, revealing that the 52 germplasms could be divided into three categories. These results indicated that SSR loci were abundant in types, numbers, and frequencies, providing a potential basis for germplasm resource identification, genetic diversity analysis, and molecular marker-assisted breeding of A. heimuer.


Expressed Sequence Tags , Gene Expression Profiling , Microsatellite Repeats , Transcriptome , Microsatellite Repeats/genetics , Gene Expression Profiling/methods , Transcriptome/genetics , Genetic Markers , Agaricales/genetics , Agaricales/classification , High-Throughput Nucleotide Sequencing , Basidiomycota/genetics , Polymorphism, Genetic , Molecular Sequence Annotation , Phylogeny
17.
Genes (Basel) ; 15(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38790212

Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders are continuously seeking new diversified and durable sources of resistance to use in developing new varieties. We developed recombinant inbred line (RIL) populations from two leaf rust-resistant genotypes (Kenya Kudu and AUS12568) introduced from Kenya to identify and characterize resistance to Pt and to develop markers linked closely to the resistance that was found. Our studies detected four QTL conferring adult plant resistance (APR) to leaf rust. Two of these loci are associated with known genes, Lr46 and Lr68, residing on chromosomes 1B and 7B, respectively. The remaining two, QLrKK_2B and QLrAus12568_5A, contributed by Kenya Kudu and AUS12568 respectively, are putatively new loci for Pt resistance. Both QLrKK_2B and QLrAus12568_5A were found to interact additively with Lr46 in significantly reducing the disease severity at adult plant growth stages in the field. We further developed a suite of six closely linked markers within the QLrAus12568_5A locus and four within the QLrKK_2B region. Among these, markers sunKASP_522 and sunKASP_524, flanking QLrAus12568_5A, and sunKASP_536, distal to QLrKK_2B, were identified as the most closely linked and reliable for marker-assisted selection. The markers were validated on a selection of 64 Australian wheat varieties and found to be polymorphic and robust, allowing for clear allelic discrimination. The identified new loci and linked molecular markers will enable rapid adoption by breeders in developing wheat varieties carrying diversified and durable resistance to leaf rust.


Disease Resistance , Plant Diseases , Puccinia , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/growth & development , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Puccinia/pathogenicity , Kenya , Genetic Markers , Chromosome Mapping , Basidiomycota/pathogenicity , Genotype , Chromosomes, Plant/genetics
18.
Genes (Basel) ; 15(5)2024 May 08.
Article En | MEDLINE | ID: mdl-38790226

Periprosthetic joint infections (PJIs) are serious complications of prosthetic surgery. The criteria for the diagnosis of PJI integrate clinical and laboratory findings in a complex and sometimes inconclusive workflow. Host immune factors hold potential as diagnostic biomarkers in bone and joint infections. We reported that the humoral pattern-recognition molecule long pentraxin 3 (PTX3) predicts PJI in total hip and knee arthroplasty (THA and TKA, respectively). If and how genetic variation in PTX3 and inflammatory genes that affect its expression (IL-1ß, IL-6, IL-10, and IL-17A) contributes to the risk of PJI is unknown. We conducted a case-control study on a Caucasian historic cohort of THA and TKA patients who had prosthesis explant due to PJI (cases) or aseptic complications (controls). Saliva was collected from 93 subjects and used to extract DNA and genotype PTX3, IL-1ß, IL-6, IL-10, and IL-17A single-nucleotide polymorphisms (SNPs). Moreover, the concentration of IL-1ß, IL-10, and IL-6 was measured in synovial fluid and plasma. No association was found between PTX3 polymorphisms and PJI; however, the AGG haplotype, encompassing rs2853550, rs1143634, and rs1143627 in IL-1ß, was linked to the infection (p = 0.017). Also, synovial levels of all inflammatory markers were higher in cases than in controls, and a correlation emerged between synovial concentration of PTX3 and that of IL-1ß in cases only (Spearman r = 0.67, p = 0.004). We identified a relationship between rs2853550 and the synovial concentration of IL-1ß and PTX3. Our findings suggest that IL-1ß SNPs could be used for the early identification of THA and TKA patients with a high risk of infection.


Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , C-Reactive Protein , Genetic Predisposition to Disease , Interleukin-1beta , Polymorphism, Single Nucleotide , Prosthesis-Related Infections , Humans , Arthroplasty, Replacement, Knee/adverse effects , Prosthesis-Related Infections/genetics , Arthroplasty, Replacement, Hip/adverse effects , Male , Female , Interleukin-1beta/genetics , Aged , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Middle Aged , Case-Control Studies , Serum Amyloid P-Component/genetics , Serum Amyloid P-Component/metabolism , Genetic Markers
19.
Genes (Basel) ; 15(5)2024 May 16.
Article En | MEDLINE | ID: mdl-38790261

Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin.


Pistacia , Pistacia/genetics , Genetic Markers/genetics , Transcriptome/genetics , Microsatellite Repeats/genetics , Mastic Resin
20.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791572

Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.


Avena , Chromosomes, Plant , DNA, Satellite , Genome, Plant , DNA, Satellite/genetics , Avena/genetics , Chromosomes, Plant/genetics , Polyploidy , DNA, Ribosomal/genetics , Genetic Markers , Hybridization, Genetic , Genetic Variation , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , In Situ Hybridization, Fluorescence
...