Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.105
Filter
4.
Medicine (Baltimore) ; 103(27): e38768, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968496

ABSTRACT

Antiretroviral therapy, also known as antiretroviral therapy (ART), has been at the forefront of the ongoing battle against human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDs). ART is effective, but it has drawbacks such as side effects, medication resistance, and difficulty getting access to treatment, which highlights the urgent need for novel treatment approaches. This review explores the complex field of HIV/AIDS treatment, covering both established alternative treatment modalities and orthodox antiretroviral therapy. Numerous reliable databases were reviewed, including PubMed, Web of Science, Scopus, and Google Scholar. The results of a thorough literature search revealed numerous therapeutic options, including stem cell transplantation, immunotherapy, gene therapy, latency reversal agents, and pharmaceutical vaccinations. While gene therapy has promise for altering cellular resistance to infection and targeting HIV-positive cells, immunotherapy treatments seek to strengthen the immune system's ability to combat HIV. Latency reversal agents offer a promising method of breaking the viral latency and making infected cells vulnerable to immune system destruction or antiretroviral drugs. Furthermore, there is potential for improving immune responses against HIV using medical vaccinations. This review stresses the vital significance of ongoing research and innovation in the hunt for a successful HIV/AIDS treatment through a thorough examination of recent developments and lingering challenges. The assessment notes that even though there has been tremendous progress in treating the illness, there is still more work to be done in addressing current barriers and investigating various treatment options in order to achieve the ultimate objective of putting an end to the HIV/AIDS pandemic.


Subject(s)
HIV Infections , Humans , HIV Infections/drug therapy , Immunotherapy/methods , Acquired Immunodeficiency Syndrome/drug therapy , Genetic Therapy , Virus Latency/drug effects , Anti-Retroviral Agents/therapeutic use , Anti-HIV Agents/therapeutic use , Stem Cell Transplantation
5.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961538

ABSTRACT

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Subject(s)
Bystander Effect , Dependovirus , Extracellular Vesicles , Genetic Therapy , RNA, Messenger , Humans , Genetic Therapy/methods , Dependovirus/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Extracellular Vesicles/metabolism , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/genetics , Genetic Vectors , Acetyltransferases/metabolism , Acetyltransferases/genetics
6.
J Nanobiotechnology ; 22(1): 386, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951806

ABSTRACT

Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Nanoparticles , Nucleic Acids , Humans , Nucleic Acids/chemistry , Animals , Genetic Therapy/methods , Nanoparticles/chemistry , Nanotechnology/methods
8.
Med Sci (Paris) ; 40(6-7): 525-533, 2024.
Article in French | MEDLINE | ID: mdl-38986097

ABSTRACT

Many diseases originate from either the absence or defective expression of a given protein. For some of them, the lacking protein is secreted or can be taken up by cells when delivered exogenously. In such cases, therapies initially involved administering the physiological protein extracted from human tissues. Subsequently, genetic engineering enabled the production of proteins through cell fermentation after introducing the corresponding gene. For many other pathologies, the deficient protein cannot be delivered exogenously. Thus, an endogenous production of the therapeutic protein by the cells themselves is necessary. Messenger RNA (mRNA) technology, like its predecessor DNA, aims to supplement the genetic information needed to produce the therapeutic protein within the cells. However, unlike DNA-based therapies, mRNA transfer allows for transient expression of the protein of interest, which offers an advantage in numerous pathologies. Nonetheless, mastering the quantity, quality, and spatio-temporal regulation of protein production encoded by therapeutic mRNA remains a significant challenge for the development of this approach.


Title: « ReNAissance ¼1 des biothérapies par ARN. Abstract: Nombre de maladies ont pour origine une absence d'expression ou une expression défectueuse d'une protéine donnée. Pour certaines d'entre elles, la protéine faisant défaut est circulante et peut être captée par les cellules lorsqu'elle est délivrée de façon exogène. Dans ce cas, les thérapies ont d'abord consisté en l'administration de la protéine thérapeutique extraite de tissus humains. Par la suite, le génie génétique a permis la production des protéines par fermentation de cellules après y avoir introduit le gène correspondant. Pour beaucoup d'autres maladies, la protéine faisant défaut ne peut être délivrée de façon exogène. Une production endogène de la protéine thérapeutique, par les cellules elles-mêmes est donc nécessaire. La technologie de l'ARN messager (ARNm), comme celle la précédant de l'ADN, se propose de supplémenter, au cœur des cellules, l'information génétique nécessaire pour produire elles-mêmes la protéine thérapeutique. Cependant, contrairement aux thérapies utilisant l'ADN, le transfert d'ARNm permet une expression transitoire de la protéine d'intérêt ce qui constitue un avantage dans nombre de maladies. La maîtrise de la quantité, de la qualité et de la régulation spatio-temporelle de la production d'une protéine codée par l'ARNm thérapeutique représente, néanmoins, un défi important pour le développement de cette approche.


Subject(s)
RNA, Messenger , Humans , RNA, Messenger/genetics , Genetic Therapy/methods , Genetic Therapy/trends , Animals , Biological Therapy/methods , Biological Therapy/trends , RNA/genetics
9.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994946

ABSTRACT

Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.


Subject(s)
Actins , Cell Nucleus , DNA Repair , Genetic Therapy , Polymerization , Humans , Actins/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Animals
10.
PLoS One ; 19(7): e0306719, 2024.
Article in English | MEDLINE | ID: mdl-38976688

ABSTRACT

Previously, we reported the development of a human Aγ-globin gene lentivirus (LV), GbG, which expresses high levels of HbF to correct the sickle cell anemia (SCA) phenotype in the Berkeley SCA mouse model, and then modified the γ-globin gene by substituting glycine at codon 16 with aspartic acid in the Aγ-globin gene to generate GbGM LV. In the present study, we evaluated the long-term safety of human Aγ-globin gene carrying GbGM LV in wild-type mice after primary and secondary transplants of GbGM-modified hematopoietic stem cells (HSC) over 18 months. The safety of the GbGM bone marrow transplant was assessed by monitoring the effects on body weight, hematology, histopathology, malignancy formation, and survival. Mice transplanted with Mock-transduced and spleen focus forming virus (SFFV) γ-retroviral vector (RV)-transduced HSC served as negative and positive controls, respectively. The mean donor-cell engraftment was comparable across Mock, GbGM LV, and SFFV RV groups. There were no significant differences in body weight, clinical signs, immunophenotype, or histopathology in the GbGM-treated mice compared to controls. Four SFFV RV-treated mice, but none of the GbGM-treated mice, developed donor-derived, vector-positive lymphomas as demonstrated by flow cytometry analysis and in situ hybridization. These results highlight the safety of the administration of GbGM LV-modified HSC with long-term follow-up after primary and secondary transplants in mice. This data supported the initiation of phase 1/2 first-in-human SCA clinical trial in the United States.


Subject(s)
Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Hemoglobinopathies , Lentivirus , gamma-Globins , Animals , Lentivirus/genetics , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Mice , Humans , gamma-Globins/genetics , Hemoglobinopathies/therapy , Hemoglobinopathies/genetics , Hematopoietic Stem Cells/metabolism , Transplantation, Autologous , Disease Models, Animal
11.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965606

ABSTRACT

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, Transferrin , Animals , Humans , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Receptors, Transferrin/metabolism , Mice , Cell Line, Tumor , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Proliferation/drug effects , Genetic Therapy/methods , RNA, Small Interfering/pharmacology , Mice, Nude
12.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000136

ABSTRACT

Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in ß-cells or ß-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.


Subject(s)
Diabetes Mellitus , Nanomedicine , Nanoparticles , Humans , Nanomedicine/methods , Animals , Diabetes Mellitus/drug therapy , Nanoparticles/chemistry , Genetic Therapy/methods , Insulin/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/administration & dosage , Drug Delivery Systems/methods
13.
Front Immunol ; 15: 1354055, 2024.
Article in English | MEDLINE | ID: mdl-39007143

ABSTRACT

Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.


Subject(s)
Dependovirus , Genetic Vectors , Immunity, Humoral , Interferon Type I , Toll-Like Receptor 9 , Humans , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/genetics , Dependovirus/genetics , Dependovirus/immunology , Interferon Type I/immunology , Genetic Vectors/genetics , Immunity, Innate , Dendritic Cells/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Genetic Therapy , Interleukin-6/blood , Interleukin-6/immunology
14.
Front Immunol ; 15: 1410564, 2024.
Article in English | MEDLINE | ID: mdl-39007148

ABSTRACT

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Subject(s)
Immunotherapy , OX40 Ligand , Animals , OX40 Ligand/genetics , Mice , Immunotherapy/methods , Cell Line, Tumor , Female , Genetic Therapy/methods , Nanoparticles , Gene Transfer Techniques , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor Microenvironment/immunology , Polyethyleneimine/chemistry , Humans , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Polyethylene Glycols/chemistry
15.
Nat Commun ; 15(1): 5927, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009678

ABSTRACT

Duchenne muscular dystrophy (DMD) affecting 1 in 3500-5000 live male newborns is the frequently fatal genetic disease resulted from various mutations in DMD gene encoding dystrophin protein. About 70% of DMD-causing mutations are exon deletion leading to frameshift of open reading frame and dystrophin deficiency. To facilitate translating human DMD-targeting CRISPR therapeutics into patients, we herein establish a genetically humanized mouse model of DMD by replacing exon 50 and 51 of mouse Dmd gene with human exon 50 sequence. This humanized mouse model recapitulats patient's DMD phenotypes of dystrophin deficiency and muscle dysfunction. Furthermore, we target splicing sites in human exon 50 with adenine base editor to induce exon skipping and robustly restored dystrophin expression in heart, tibialis anterior and diaphragm muscles. Importantly, systemic delivery of base editor via adeno-associated virus in the humanized male mouse model improves the muscle function of DMD mice to the similar level of wildtype ones, indicating the therapeutic efficacy of base editing strategy in treating most of DMD types with exon deletion or point mutations via exon-skipping induction.


Subject(s)
Adenine , CRISPR-Cas Systems , Disease Models, Animal , Dystrophin , Exons , Gene Editing , Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Dystrophin/metabolism , Exons/genetics , Humans , Male , Gene Editing/methods , Mice , Adenine/metabolism , Muscle, Skeletal/metabolism , Dependovirus/genetics , Genetic Therapy/methods
16.
Signal Transduct Target Ther ; 9(1): 175, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39013849

ABSTRACT

Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.


Subject(s)
Genetic Therapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Molecular Targeted Therapy , Cell- and Tissue-Based Therapy , Antineoplastic Agents/therapeutic use
17.
J Transl Med ; 22(1): 664, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014470

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS: To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS: We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS: Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.


Subject(s)
Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Phosphatidate Phosphatase , Animals , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Phosphatidate Phosphatase/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice, Transgenic , Mice , Muscle Contraction , Molecular Targeted Therapy , Mice, Inbred C57BL , Genetic Therapy , Male
18.
Mol Biol Rep ; 51(1): 828, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033258

ABSTRACT

Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.


Subject(s)
CRISPR-Cas Systems , Cholesterol , Gene Editing , Genetic Therapy , Niemann-Pick Disease, Type C , CRISPR-Cas Systems/genetics , Humans , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Gene Editing/methods , Genetic Therapy/methods , Cholesterol/metabolism , Animals , Niemann-Pick C1 Protein , Disease Models, Animal
19.
Nat Commun ; 15(1): 6141, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034316

ABSTRACT

Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.


Subject(s)
Dependovirus , Dystrophin , Genetic Therapy , Genetic Vectors , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Animals , Dystrophin/genetics , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/pathology , Genetic Therapy/methods , Dependovirus/genetics , Mice , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Sarcolemma/metabolism , Humans , Gene Transfer Techniques
SELECTION OF CITATIONS
SEARCH DETAIL