Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.343
Filter
1.
Virulence ; 15(1): 2382762, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39092797

ABSTRACT

African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , African Swine Fever/virology , African Swine Fever/genetics , Swine , African Swine Fever Virus/genetics , Disease Resistance/genetics , Genetic Variation , Genome/genetics , Whole Genome Sequencing , Genomic Structural Variation , China , Sus scrofa
2.
Med Sci Monit ; 30: e945933, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39086277

ABSTRACT

Therapeutic human gene editing technologies continue to advance, with the endonuclease, clustered regularly interspaced short palindromic repeats (CRISPR) being one of the most rapidly developing technologies. Recently, in 2024, a method of RNA editing called 'bridge editing' has been described in bacteria, which is more powerful and has broader applications than CRISPR to reshape the genome. The term 'bridge editing' is used because the method physically links, or bridges, two sections of DNA and can alter large sections of a genome. 'Bridge editing' relies on insertion sequence (IS) elements, the simplest autonomous transposable elements in prokaryotic genomes. This method provides a unified mechanism for the three fundamental types of DNA rearrangement required for genome design: inversion, insertion, and excision. The 'bridge' recombination system could expand the range and diversity of nucleic acid-guided therapeutic systems beyond RNA interference and CRISPR. This editorial aims to introduce new developments in 'bridge' RNA editing that have the increased potential to reshape the genome.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA Editing , Gene Editing/methods , RNA Editing/genetics , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , DNA Transposable Elements/genetics
3.
Nat Commun ; 15(1): 6609, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098897

ABSTRACT

Hybridization has been recognized to play important roles in evolution, however studies of the genetic consequence are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the genus Xiphophorus are proposed to have evolved with multiple ancient and ongoing hybridization events. They have served as an informative research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genomic resource including annotations for all described 26 Xiphophorus species and three undescribed taxa and resolve all uncertain phylogenetic relationships. We investigate the molecular evolution of genes related to cancers such as melanoma and for the genetic control of puberty timing, focusing on genes that are predicted to be involved in pre-and postzygotic isolation and thus affect hybridization. We discovered dramatic size-variation of some gene families. These persisted despite reticulate evolution, rapid speciation and short divergence time. Finally, we clarify the hybridization history in the entire genus settling disputed hybridization history of two Southern swordtails. Our comparative genomic analyses revealed hybridization ancestries that are manifested in the mosaic fused genomes and show that hybridization often preceded speciation.


Subject(s)
Cyprinodontiformes , Evolution, Molecular , Genetic Speciation , Hybridization, Genetic , Phylogeny , Animals , Cyprinodontiformes/genetics , Cyprinodontiformes/classification , Genomics/methods , Genome/genetics
4.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103649

ABSTRACT

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Subject(s)
Ruminants , Telomere , Telomere/genetics , Animals , Ruminants/genetics , Evolution, Molecular , Genome/genetics , Selection, Genetic , Phylogeny , Diploidy
5.
Curr Protoc ; 4(8): e1120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39126338

ABSTRACT

JBrowse 2 is a modular genome browser that can visualize many common genomic file formats. While JBrowse 2 supports a variety of different usages, it is particularly suited for deployment on websites, such as model organism databases or other web-based genomic data resources. This protocol provides detailed instructions for setting up JBrowse 2 on an Ubuntu Linux web server, loading a reference genome from a FASTA format file, and adding a gene annotation track from a GFF3 format file. By the end of the protocol, users will have a working JBrowse 2 instance that is accessible via the web. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Setting up JBrowse 2 on your web server.


Subject(s)
Genomics , Genomics/methods , Software , Web Browser , Databases, Genetic , Internet , Genome/genetics , Humans , User-Computer Interface
6.
PeerJ ; 12: e17651, 2024.
Article in English | MEDLINE | ID: mdl-38993980

ABSTRACT

Background: Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods: We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results: We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.


Subject(s)
Chiroptera , Genome , Genomics , Phylogeny , Animals , Mexico , Genome/genetics , Chiroptera/genetics , Genomics/methods
7.
Methods Mol Biol ; 2805: 127-135, 2024.
Article in English | MEDLINE | ID: mdl-39008178

ABSTRACT

The modulation of cis-regulatory elements (e.g., enhancers and promoters) is a major mechanism by which gene expression can be controlled in a temporal and spatially restricted manner. However, methods for both identifying these elements and inferring their activity are limited and often require a substantial investment of time, money, and resources. Here, using mammalian skin as a model, we demonstrate a streamlined protocol by which these hurdles can be overcome using a novel chromatin profiling technique (CUT&RUN) to map histone modifications genome-wide. This protocol can be used to map the location and activity of putative cis-regulatory elements, providing mechanistic insight into how differential gene expression is controlled in mammalian tissues.


Subject(s)
Promoter Regions, Genetic , Skin , Animals , Skin/metabolism , Enhancer Elements, Genetic , Chromatin/genetics , Chromatin/metabolism , Humans , Mammals/genetics , Mice , Gene Expression Regulation , Regulatory Sequences, Nucleic Acid/genetics , Histones/metabolism , Histones/genetics , Genome/genetics , Gene Expression Profiling/methods , Chromatin Immunoprecipitation/methods
8.
Nat Commun ; 15(1): 5936, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009560

ABSTRACT

Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.


Subject(s)
Scyphozoa , Single-Cell Analysis , Swimming , Animals , Scyphozoa/genetics , Scyphozoa/physiology , Diapause/genetics , Genomics/methods , Genome/genetics , Transcriptome , Gene Expression Profiling
9.
Postepy Biochem ; 70(1): 8-21, 2024 05 23.
Article in English | MEDLINE | ID: mdl-39016227

ABSTRACT

Genome replication requires duplication of the complete set of DNA sequences together with nucleosomes and epigenetic signatures. Notwithstanding profound knowledge on mechanistic details of DNA replication, major problems of genome replication have remained unresolved. In this perspective article, we consider the accessibility of replication machines to all DNA sequences in due course, the maintenance of functionally important positional and structural features of chromatid domains during replication, and the rapid transition of CTs into prophase chromosomes with two chromatids. We illustrate this problem with EdU pulse-labeling (10 min) and chase experiments (80 min) performed with mouse myeloblast cells. Following light optical serial sectioning of nuclei with 3D structured illumination microscopy (SIM), seven DNA intensity classes were distinguished as proxies for increasing DNA compaction. In nuclei of cells fixed immediately after the pulse-label, we observed a relative under-representation of EdU-labeled DNA in low DNA density classes, representing the active nuclear compartment (ANC), and an over-representation in high density classes representing the inactive nuclear compartment (INC). Cells fixed after the chase revealed an even more pronounced shift to high DNA intensity classes. This finding contrasts with previous studies of the transcriptional topography demonstrating an under-representation of epigenetic signatures for active chromatin and RNAPII in high DNA intensity classes and their over-representation in low density classes. We discuss these findings in the light of current models viewing CDs either as structural chromatin frameworks or as phase-separated droplets, as well as methodological limitations that currently prevent an integration of this contrasting evidence for the spatial nuclear topography of replication and transcription into a common framework of the dynamic nuclear architecture.


Subject(s)
DNA Replication , Animals , Mice , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA Replication/physiology , Epigenesis, Genetic/physiology , Genome/genetics , Microscopy/methods
10.
Genes (Basel) ; 15(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062676

ABSTRACT

Bos taurus is known for its tolerance of coarse grains, adaptability, high temperature, humidity, and disease resistance. Primarily, cattle are raised for their meat and milk, and pinpointing genes associated with traits relevant to meat production can enhance their overall productivity. The aim of this study was to identify the genome, analyze the evolution, and explore the function of the Pax gene family in B. taurus to provide a new molecular target for breeding in meat-quality-trait cattle. In this study, 44 Pax genes were identified from the genome database of five species using bioinformatics technology, indicating that the genetic relationships of bovids were similar. The Pax3 and Pax7 protein sequences of the five animals were highly consistent. In general, the Pax gene of the buffalo corresponds to the domestic cattle. In summary, there are differences in affinity between the Pax family genes of buffalo and domestic cattle in the Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6 subfamilies. We believe that Pax1/9 has an effect on the growth traits of buffalo and domestic cattle. The Pax3/7 gene is conserved in the evolution of buffalo and domestic animals and may be a key gene regulating the growth of B. taurus. The Pax2/5/8 subfamily affects coat color, reproductive performance, and milk production performance in cattle. The Pax4/6 subfamily had an effect on the milk fat percentage of B. taurus. The results provide a theoretical basis for understanding the evolutionary, structural, and functional characteristics of the Pax family members of B. taurus and for molecular genetics and the breeding of meat-production B. taurus species.


Subject(s)
Buffaloes , Evolution, Molecular , Paired Box Transcription Factors , Animals , Cattle/genetics , Paired Box Transcription Factors/genetics , Buffaloes/genetics , Multigene Family , Genome/genetics , DNA Mutational Analysis , Phylogeny
11.
Genes (Basel) ; 15(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062688

ABSTRACT

(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Selection, Genetic , Whole Genome Sequencing , Animals , Goats/genetics , Whole Genome Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Phylogeny , China , Breeding , Genome/genetics , Genetic Variation
12.
Proc Natl Acad Sci U S A ; 121(28): e2307107121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959040

ABSTRACT

Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.


Subject(s)
Daphnia , Genome , Selection, Genetic , Animals , Daphnia/genetics , Genome/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population/methods
13.
Nat Commun ; 15(1): 5573, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956036

ABSTRACT

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.


Subject(s)
DNA Transposable Elements , Molecular Sequence Annotation , DNA Transposable Elements/genetics , Molecular Sequence Annotation/methods , Animals , Software , Humans , Reproducibility of Results , Computational Biology/methods , Databases, Genetic , Algorithms , Genome/genetics
14.
Nat Commun ; 15(1): 5568, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956050

ABSTRACT

Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.


Subject(s)
Genome , Mammals , Animals , Genome/genetics , Mammals/genetics , Phylogeny , Evolution, Molecular , Aquatic Organisms/genetics , Australia , Circadian Clocks/genetics , Biological Evolution
15.
mSystems ; 9(7): e0026724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38958457

ABSTRACT

Are two adjacent genes in the same operon? What are the order and spacing between several transcription factor binding sites? Genome browsers are software data visualization and exploration tools that enable biologists to answer questions such as these. In this paper, we report on a major update to our browser, Genome Explorer, that provides nearly instantaneous scaling and traversing of a genome, enabling users to quickly and easily zoom into an area of interest. The user can rapidly move between scales that depict the entire genome, individual genes, and the sequence; Genome Explorer presents the most relevant detail and context for each scale. By downloading the data for the entire genome to the user's web browser and dynamically generating visualizations locally, we enable fine control of zoom and pan functions and real-time redrawing of the visualization, resulting in smoother and more intuitive exploration of a genome than is possible with other browsers. Further, genome features are presented together, in-line, using familiar graphical depictions. In contrast, many other browsers depict genome features using data tracks, which have low information density and can visually obscure the relative positions of features. Genome Explorer diagrams have a high information density that provides larger amounts of genome context and sequence information to be presented in a given-sized monitor than for tracks-based browsers. Genome Explorer provides optional data tracks for the analysis of large-scale data sets and a unique comparative mode that aligns genomes at orthologous genes with synchronized zooming. IMPORTANCE: Genome browsers provide graphical depictions of genome information to speed the uptake of complex genome data by scientists. They provide search operations to help scientists find information and zoom operations to enable scientists to view genome features at different resolutions. We introduce the Genome Explorer browser, which provides extremely fast zooming and panning of genome visualizations and displays with high information density.


Subject(s)
Software , Genomics/methods , Web Browser , Genome/genetics , User-Computer Interface
16.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996487

ABSTRACT

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Subject(s)
Genome , Mammoths , Skin , Animals , Mammoths/genetics , Genome/genetics , Female , Elephants/genetics , Chromatin/genetics , Fossils , DNA, Ancient/analysis , Mice , Humans , X Chromosome/genetics
17.
Yi Chuan ; 46(7): 530-539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016086

ABSTRACT

Accurate breed classification is required for the conservation and utilization of farm animal genetic resources. Traditional classification methods mainly rely on phenotypic characterization. However, it is difficult to distinguish between the highly similar breeds due to the challenges in qualifying the phenotypic character. Machine learning algorithms show unique advantages in breed classification using genomic information. To evaluate the classification methods for Chinese cattle breeds, this study utilized genomic SNP data from 213 individuals across seven Chinese local breeds and compared the classification accuracies of three feature selection methods (FST value sorting and screening, mRMR, and Relief-F) and three machine learning algorithms (Random Forest, Support Vector Machine, and Naive Bayes). Results showed that: 1) using the FST method to screen more than 1500 SNPs, or using the mRMR algorithm to screen more than 1000 SNPs, the SVM classification algorithm can achieve more than 99.47% classification accuracy; 2) the most effective algorithm was SVM, followed by NB, while the best SNP selection method was FST and mRMR, followed by Relief-F; 3) species misclassification often occurs between breeds with high similarity. This study demonstrates that machine learning classification models combined with genomic data are effective methods for the classification of local cattle breeds, providing a technical basis for the rapid and accurate classification of cattle breeds in China.


Subject(s)
Algorithms , Machine Learning , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , China , Breeding , Genomics/methods , Support Vector Machine , Genetic Markers/genetics , Genome/genetics
18.
Mol Ecol ; 33(15): e17451, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970417

ABSTRACT

Human-mediated habitat destruction has had a profound impact on increased species extinction rates and population declines worldwide. The coastal development in the United Arab Emirates (UAE) over the last two decades, serves as an example of how habitat transformation can alter the landscape of a country in just a few years. Here, we study the genomic implications of habitat transformation in the Critically Endangered Emirati Leaf-toed Gecko (Asaccus caudivolvulus), the only endemic vertebrate of the UAE. We generate a high-quality reference genome for this gecko, representing the first reference genome for the family Phyllodactylidae, and produce whole-genome resequencing data for 23 specimens from 10 different species of leaf-toed geckos. Our results show that A. caudivolvulus has consistently lower genetic diversity than any other Arabian species of Asaccus, suggesting a history of ancient population declines. However, high levels of recent inbreeding are recorded among populations in heavily developed areas, with a more than 50% increase in long runs of homozygosity within a 9-year period. Moreover, results suggest that this species does not effectively purge deleterious mutations, hence making it more vulnerable to future stochastic threats. Overall, results show that A. caudivolvulus is in urgent need of protection, and habitat preservation must be warranted to ensure the species' survival.


Subject(s)
Ecosystem , Endangered Species , Genetics, Population , Inbreeding , Lizards , Animals , Lizards/genetics , United Arab Emirates , Genetic Variation , Population Dynamics , Genome/genetics , Humans , Conservation of Natural Resources
19.
Curr Opin Genet Dev ; 87: 102233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39042999

ABSTRACT

Structural variants (SVs) account for the majority of base pair differences both within and between primate species. However, our understanding of inter- and intra-species SV has been historically hampered by the quality of draft primate genomes and the absence of genome resources for key taxa. Recently, advances in long-read sequencing and genome assembly have begun to radically reshape our understanding of SVs. Two landmark achievements include the publication of a human telomere-to-telomere (T2T) genome as well as the development of the first human pangenome reference. In this review, we first look back to the major works laying the foundation for these projects. We then examine the ways in which T2T genome assemblies and pangenomes are transforming our understanding of and approach to primate SV. Finally, we discuss what the future of primate SV research may look like in the era of T2T genomes and pangenomics.


Subject(s)
Genomics , Primates , Telomere , Humans , Animals , Primates/genetics , Telomere/genetics , Genomics/methods , Genome, Human , Genome/genetics , Evolution, Molecular , Genomic Structural Variation/genetics
20.
Mol Ecol Resour ; 24(6): e13989, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946220

ABSTRACT

Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.


Subject(s)
Evolution, Molecular , Animals , Fishes/genetics , Fishes/classification , Fishes/physiology , Adaptation, Physiological/genetics , Genome/genetics , Adaptation, Biological/genetics , Phylogeny , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL