Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Plant Physiol Biochem ; 212: 108754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824693

ABSTRACT

Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.


Subject(s)
Ginkgo biloba , Terpenes , Ginkgo biloba/metabolism , Ginkgo biloba/genetics , Terpenes/metabolism , Gene Expression Regulation, Plant
2.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38728368

ABSTRACT

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.


Subject(s)
Flavonoids , Ginkgo biloba , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Flavonoids/metabolism , Flavonoids/biosynthesis , Acetylation , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Processing, Post-Translational , Transcriptome , Proteome/metabolism , Gene Expression Regulation, Plant , Multiomics
3.
Plant Genome ; 17(2): e20440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462710

ABSTRACT

4-Coumarate-CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue-specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall-related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.


Subject(s)
Cloning, Molecular , Ginkgo biloba , Lignin , Plant Proteins , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Lignin/biosynthesis , Lignin/metabolism , Gene Expression Regulation, Plant , Phylogeny , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Plant Growth Regulators/metabolism
4.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38459807

ABSTRACT

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Subject(s)
Ginkgo biloba , Ovule , Pollen , Pollination , Ovule/growth & development , Ovule/physiology , Ovule/genetics , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Ginkgo biloba/genetics , Ginkgo biloba/physiology , Ginkgo biloba/growth & development , Transcriptome , Gene Expression Regulation, Plant
5.
Plant Physiol ; 195(2): 1446-1460, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38431523

ABSTRACT

Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factor 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase [HMGR], 3-hydroxy-3-methylglutaryl-CoA synthase [HMGS], 1-deoxy-D-xylulose-5-phosphate reductoisomerase [DXR], 1-deoxy-D-xylulose-5-phosphate synthase [DXS], acetyl-CoA C-acetyltransferase [AACT], and geranylgeranyl diphosphate synthase [GGPPS]) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast 1-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the biosynthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.


Subject(s)
Gene Expression Regulation, Plant , Ginkgo biloba , Lactones , MicroRNAs , Nicotiana , Plant Proteins , Terpenes , MicroRNAs/genetics , MicroRNAs/metabolism , Terpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Lactones/metabolism , Plants, Genetically Modified , Biosynthetic Pathways/genetics
6.
Plant Sci ; 342: 112027, 2024 May.
Article in English | MEDLINE | ID: mdl-38354754

ABSTRACT

The APETALA2 (AP2) transcription factors play crucial roles in plant growth and stage transition. Ginkgo biloba is an important medicinal plant renowned for the rich flavonoid content in its leaves. In this study, 18 GbAP2s were identified from the G. biloba genome and classified into three clusters. We found that the members of the euAP2 cluster, including four TOEs (GbTOE1a/1b/1c/3), exhibited a higher expression level in most samples compared to other members. Specifically, GbTOE1a may have a positive regulatory role in salt and drought stress responses. The overexpression of GbTOE1a in G. biloba calli resulted in a significant increase in the flavonoid content and upregulation of flavonoid biosynthesis genes, including PAL, 4CL, CHS, F3H, FLSs, F3'Hs, OMT, and DFRs. By contrast, the silencing of GbTOE1a in seedlings decreased the flavonoid content and the expression of flavonoid synthesizing genes. In addition, the silenced seedlings exhibited decreased antioxidant levels and a higher sensitivity to salt and drought treatments, suggesting a crucial role of GbTOE1a in G. biloba salt and drought tolerance. To the best of our knowledge, this was the first investigation into the identification and characterization of GbAP2s in G. biloba. Our results lay a foundation for further research on the regulatory role of the AP2 family in flavonoid synthesis and stress responses.


Subject(s)
Droughts , Ginkgo biloba , Ginkgo biloba/genetics , Drought Resistance , Genome-Wide Association Study , Plant Extracts/metabolism , Flavonoids/metabolism , Sodium Chloride/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37741055

ABSTRACT

Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.


Subject(s)
Acetates , Ginkgo biloba , Ginkgolides , Oxylipins , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ginkgolides/metabolism , Plant Extracts/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
8.
Plant Sci ; 339: 111948, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097046

ABSTRACT

Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.


Subject(s)
Arabidopsis , RNA, Long Noncoding , Ginkgo biloba/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/analysis , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Extracts/metabolism , Flavonoids , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/metabolism
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069325

ABSTRACT

As a medicinal tree species, ginkgo (Ginkgo biloba L.) and terpene trilactones (TTLs) extracted from its leaves are the main pharmacologic activity constituents and important economic indicators of its value. The accumulation of TTLs is known to be affected by environmental stress, while the regulatory mechanism of environmental response mediated by microRNAs (miRNAs) at the post-transcriptional levels remains unclear. Here, we focused on grafted ginkgo grown in northwestern, southwestern, and eastern-central China and integrally analyzed RNA-seq and small RNA-seq high-throughput sequencing data as well as metabolomics data from leaf samples of ginkgo clones grown in natural environments. The content of bilobalide was highest among detected TTLs, and there was more than a twofold variation in the accumulation of bilobalide between growth conditions. Meanwhile, transcriptome analysis found significant differences in the expression of 19 TTL-related genes among ginkgo leaves from different environments. Small RNA sequencing and analysis showed that 62 of the 521 miRNAs identified were differentially expressed among different samples, especially the expression of miRN50, miR169h/i, and miR169e was susceptible to environmental changes. Further, we found that transcription factors (ERF, MYB, C3H, HD-ZIP, HSF, and NAC) and miRNAs (miR319e/f, miRN2, miRN54, miR157, miR185, and miRN188) could activate or inhibit the expression of TTL-related genes to participate in the regulation of terpene trilactones biosynthesis in ginkgo leaves by weighted gene co-regulatory network analysis. Our findings provide new insights into the understanding of the regulatory mechanism of TTL biosynthesis but also lay the foundation for ginkgo leaves' medicinal value improvement under global change.


Subject(s)
Bilobalides , MicroRNAs , MicroRNAs/genetics , Ginkgolides , Terpenes/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Extracts , Lactones/metabolism
10.
BMC Genomics ; 24(1): 633, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872493

ABSTRACT

Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.


Subject(s)
Nitrates , Plant Proteins , Nitrates/pharmacology , Nitrates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ginkgo biloba/genetics , Anion Transport Proteins/genetics , Anion Transport Proteins/chemistry , Anion Transport Proteins/metabolism , Nitrate Transporters , Nitrogen/metabolism , Indoleacetic Acids , Gene Expression Regulation, Plant , Phylogeny
11.
Plant Signal Behav ; 18(1): 2271807, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37903458

ABSTRACT

The PAL gene family plays an important role in plant growth, development, and response to abiotic stresses and has been identified in a variety of plants. However, a systematic characterization is still lacking in Ginkgo biloba. Using a bioinformatics approach, 11 GbPAL members of the PAL gene family identified in ginkgo were identified in this study. The protein structure and physicochemical properties indicated that the GbPAL genes were highly similar. Based on their exon-intron structures, they can be classified into three groups. A total of 62 cis-elements for hormone, light, and abiotic stress responses were identified in the promoters of GbPAL genes, indicating that PAL is a multifunctional gene family. GbPAL genes were specifically expressed in different tissues and ploidy of ginkgo. These results provide a theoretical basis for further studies on the functional expression of the GbPAL genes.


Subject(s)
Ginkgo biloba , Phenylalanine Ammonia-Lyase , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Profiling
12.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834050

ABSTRACT

Flavonoids and their derivatives play important roles in plants, such as exerting protective activity against biotic and abiotic stresses, functioning in visual signaling to attract pollinators, and regulating phytohormone activity. They are also important secondary metabolites that are beneficial to humans. Ginkgo biloba L. is a well-known relict plant considered to be a "living fossil". Flavonoids present in ginkgo leaves have antioxidant and anti-aging capacities and show good therapeutic effects on a variety of neurological diseases. To date, studies on flavonoids have mainly focused on their extraction, pharmacological effects, and component analysis and on the expression levels of the key genes involved. However, a systematic review summarizing the biosynthesis and regulatory mechanisms of ginkgo flavonoids is still lacking. Thus, this review was conducted to comprehensively introduce the biological characteristics, value, and utilization status of ginkgo; summarize the effects, biosynthetic pathways, and transcriptional regulation of flavonoids; and finally, discuss the factors (ecological factors, hormones, etc.) that regulate the biosynthesis of flavonoids in ginkgo. This review will provide a reference basis for future research on the biosynthesis and efficient utilization of flavonoids in ginkgo.


Subject(s)
Flavonoids , Ginkgo biloba , Humans , Flavonoids/metabolism , Ginkgo biloba/genetics , Plant Extracts/pharmacology , Plant Leaves/metabolism
13.
J Plant Physiol ; 287: 154054, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487356

ABSTRACT

Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.


Subject(s)
Ginkgo biloba , Transcription Factors , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Flavonoids/metabolism , Anthocyanins/metabolism , Plant Proteins/metabolism
14.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982974

ABSTRACT

Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues' growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.


Subject(s)
Gene Expression Profiling , Ginkgo biloba , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Hormones , Plant Growth Regulators/pharmacology , Phylogeny , Gene Expression Regulation, Plant
15.
Genes (Basel) ; 14(2)2023 01 28.
Article in English | MEDLINE | ID: mdl-36833270

ABSTRACT

WRKY transcription factors (TFs) are one of the largest families in plants which play essential roles in plant growth and stress response. Ginkgo biloba is a living fossil that has remained essentially unchanged for more than 200 million years, and now has become widespread worldwide due to the medicinal active ingredients in its leaves. Here, 37 WRKY genes were identified, which were distributed randomly in nine chromosomes of G. biloba. Results of the phylogenetic analysis indicated that the GbWRKY could be divided into three groups. Furthermore, the expression patterns of GbWRKY genes were analyzed. Gene expression profiling and qRT-PCR revealed that different members of GbWRKY have different spatiotemporal expression patterns in different abiotic stresses. Most of the GbWRKY genes can respond to UV-B radiation, drought, high temperature and salt treatment. Meanwhile, all GbWRKY members performed phylogenetic tree analyses with the WRKY proteins of other species which were known to be associated with abiotic stress. The result suggested that GbWRKY may play a crucial role in regulating multiple stress tolerances. Additionally, GbWRKY13 and GbWRKY37 were all located in the nucleus, while GbWRKY15 was located in the nucleus and cytomembrane.


Subject(s)
Genome, Plant , Ginkgo biloba , Humans , Phylogeny , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Transcription Factors/genetics
16.
Plant Signal Behav ; 18(1): 2163339, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36630727

ABSTRACT

Although flavonoids play multiple roles in plant growth and development, the involvement in plant self-incompatibility (SI) have not been reported. In this research, the fertility of transgenic tobacco plants overexpressing the Ginkgo biloba dihydroflavonol 4-reductase gene, GbDFR6, were investigated. To explore the possible physiological defects leading to the failure of embryo development in transgenic tobacco plants, functions of pistils and pollen grains were examined. Transgenic pistils pollinated with pollen grains from another tobacco plants (either transgenic or wild-type), developed full of well-developed seeds. In contrast, in self-pollinated transgenic tobacco plants, pollen-tube growth was arrested in the upper part of the style, and small abnormal seeds developed without fertilization. Although the mechanism remains unclear, our research may provide a valuable method to create SI tobacco plants for breeding.


Subject(s)
Ginkgo biloba , Nicotiana , Ginkgo biloba/genetics , Nicotiana/physiology , Pollen/genetics , Pollination/genetics , Phenotype
17.
Plant Biol (Stuttg) ; 25(1): 107-118, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36377299

ABSTRACT

NAC (NAM, ATAF, CUC2) transcription factors constitute one of the largest families of plant-specific transcription factors with important roles in plant growth and development and in biotic and abiotic stresses. The physicochemical properties, gene structure, cis-acting elements and expression patterns of NAC transcription factors in Ginkgo biloba were analysed using bioinformatics, and expression of this gene family was analysed via quantitative reverse transcription PCR. The family of G. biloba NAC transcription factors had 50 members, distributed on 12 chromosomes and divided into 11 groups. Members in the same group share a similar gene structure and motif distribution. Transcriptome data analysis of G. biloba showed that 35 genes were expressed in eight tissues. Correlation analysis suggested that GbNAC007 and GNAC008 might be involved in flavonoid biosynthesis. Expression levels of 12 GbNACs under cold, het, and salt stresses were analysed. Results indicate that NAC transcription factors play an important role in response to abiotic stresses. This study provides a reference for the functional analysis of the G. biloba family of NAC transcription factors, as well as a resource for studies on the involvement of this family in responses to abiotic stresses and flavonoid biosynthesis.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Proteins/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Flavonoids
18.
Int J Biol Macromol ; 224: 306-318, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36257359

ABSTRACT

Having different number if genome copies affect transcription and metabolite production of plants. This may be due to different gene transcription and protein expression, but the reasons for this remains poorly known. Here we measured flavonoid content in leaves of three haploid and diploid grafted plants of Ginkgo biloba, a model gymnosperm important economically for its flavonoid content. We reported the first combined transcriptomic and proteomic analysis of the difference in flavonoid content in three haploid ginkgos to investigate the effect of haploidy. Haploids had always smaller leaves and flavonoid content than the diploids. The selected haploid had also generally lower gene dosage than the selected diploid, with 1149 up-regulated (46.8 %) and 1309 down-regulated (53.2 %) among 2452 differentially expressed genes (DEGs). Of 686 differentially expressed proteins (DEPs) detected, 289 proteins (42.1 %) were upregulated, and 397 proteins (57.9 %) were downregulated in haploids. A particular attention deserves the downregulation of PAL, PAM, FLS, OMT1 hub genes involved in flavonoid biosynthesis regulation. Our study confirms the trend of haploids to have lower metabolic contents and points that lower flavonoid content in ginkgo monoploids could be due to reduced dosage of the corresponding regulatory genes and downregulation of genes involved in flavonoid synthesis.


Subject(s)
Ginkgo biloba , Transcriptome , Ginkgo biloba/genetics , Haploidy , Proteome/genetics , Proteomics , Flavonoids/metabolism , Gene Expression Regulation, Plant
19.
Nat Commun ; 13(1): 5143, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050299

ABSTRACT

The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.


Subject(s)
Cytochrome P-450 Enzyme System , Ginkgo biloba , Ginkgolides , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ginkgolides/chemistry , Humans , Lactones/metabolism , Multigene Family , Plant Extracts/chemistry , Terpenes
20.
BMC Plant Biol ; 22(1): 465, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171567

ABSTRACT

BACKGROUND: Golden leaf in autumn is a prominent feature of deciduous tree species like Ginkgo biloba L., a landscape tree widely cultivated worldwide. However, little was known about the molecular mechanisms of leaf yellowing, especially its dynamic regulatory network. Here, we performed a suite of comparative physiological and dynamic transcriptional analyses on the golden-leaf cultivar and the wild type (WT) ginkgo to investigate the underlying mechanisms of leaf yellowing across different seasons. RESULTS: In the present study, we used the natural bud mutant cultivar with yellow leaves "Wannianjin" (YL) as materials. Physiological analysis revealed that higher ratios of chlorophyll a to chlorophyll b and carotenoid to chlorophyll b caused the leaf yellowing of YL. On the other hand, dynamic transcriptome analyses showed that genes related to chlorophyll metabolism played key a role in leaf coloration. Genes encoding non-yellow coloring 1 (NYC1), NYC1-like (NOL), and chlorophyllase (CLH) involved in the degradation of chlorophyll were up-regulated in spring. At the summer stage, down-regulated HEMA encoding glutamyl-tRNA reductase functioned in chlorophyll biosynthesis, while CLH involved in chlorophyll degradation was up-regulated, causing a lower chlorophyll accumulation. In carotenoid metabolism, genes encoding zeaxanthin epoxidase (ZEP) and 9-cis-epoxy carotenoid dioxygenase (NCED) showed significantly different expression levels in the WT and YL. Moreover, the weighted gene co-expression network analysis (WGCNA) suggested that the most associated transcriptional factor, which belongs to the AP2/ERF-ERF family, was engaged in regulating pigment metabolism. Furthermore, quantitative experiments validated the above results. CONCLUSIONS: By comparing the golden-leaf cultivar and the wide type of ginkgo across three seasons, this study not only confirm the vital role of chlorophyll in leaf coloration of YL but also provided new insights into the seasonal transcriptome landscape and co-expression network. Our novel results pinpoint candidate genes for further wet-bench experiments in tree species.


Subject(s)
Dioxygenases , Ginkgo biloba , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Dioxygenases/genetics , Gene Expression Regulation, Plant , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...