Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 817
Filter
1.
Arch Dermatol Res ; 316(8): 551, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167160

ABSTRACT

Hypertrophic scar (HS) results from burns or trauma, causing aesthetic and functional issues. However, observational studies have linked inflammatory cytokines to HS, but the causal pathways involved are unclear. We aimed to determine how circulating inflammatory cytokines contribute to HS formation. Two-sample Mendelian randomization (MR) was used to identify genetic variants associated with hypertrophic scar in a comprehensive, publicly available genome-wide association study (GWAS) involving 766 patients and 207,482 controls of European descent. Additionally, data on 91 plasma proteins were drawn from a GWAS summary involving 14,824 healthy participants. Causal relationships between exposures and outcomes were investigated primarily using the inverse variance weighted (IVW) method. Furthermore, a suite of sensitivity analyses, including MR‒Egger and weighted median approaches, were concurrently employed to fortify the robustness of the conclusive findings. Finally, reverse MR analysis was conducted to evaluate the plausibility of reverse causation between hypertrophic scar and the cytokines identified in our study. In inflammatory cytokines, there was evidence of inverse associations of osteoprotegerin(OPG) levels(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01), and leukemia inhibitory factor(LIF) levels(OR = 0.51, 95% CI = 0.32 ∼ 0.82, p = 0.01) are a nominally negative association with hypertrophic scar risk, while CUB domain-domain-containing protein 1(CDCP1) level(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01) glial cell line-derived neurotrophic factor(GDNF) levels(OR = 1.42, 95% CI = 1.03 ∼ 1.96, p = 0.01) and programmed cell death 1 ligand 1(PD-L1) levels(OR = 1.47, 95% CI = 1.92 ∼ 2.11, p = 0.04) showed a positive association with hypertrophic scar risk. These associations were similar in the sensitivity analyses. According to our MR findings, OPG and LIF have a protective effect on hypertrophic scar, while CDCP1, GDNF, and PD-L1 have a risk-increasing effect on Hypertrophic scar. Our study adds to the current knowledge on the role of specific inflammatory biomarker pathways in hypertrophic scar. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for hypertrophic scar prevention and treatment.


Subject(s)
Cicatrix, Hypertrophic , Genome-Wide Association Study , Leukemia Inhibitory Factor , Mendelian Randomization Analysis , Osteoprotegerin , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/epidemiology , Cicatrix, Hypertrophic/blood , Cicatrix, Hypertrophic/pathology , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/blood , Osteoprotegerin/genetics , Osteoprotegerin/blood , Polymorphism, Single Nucleotide , Glial Cell Line-Derived Neurotrophic Factor/genetics , Cytokines/genetics , Cytokines/blood , Genetic Predisposition to Disease , Risk Factors , Male , Female
2.
Neuromolecular Med ; 26(1): 34, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167282

ABSTRACT

Both of exosomes derived from mesenchymal stem cells (MSCs) and glial cell line-derived neurotrophic factor (GDNF) show potential for the treatment of neuropathic pain. Here, the analgesic effects of exosomes derived from bone marrow MSCs (BMSCs) were investigated. BMSCs-derived exosomes were isolated and characterized. Chronic constriction injury (CCI) was constructed to induce neuropathic pain in rats, which were then treated with exosomes. Pain behaviors were evaluated by measuring paw withdrawal thresholds and latency. The changes of key proteins, including cytokines, were explored using Western blot and ELISA. Administration of BMSCs-derived exosomes alleviated neuropathic pain, as demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia, as well as the reduced secretion of pro-inflammatory cytokines in CCI rats. These effects were comparable to the treatment of GDNF alone. Mechanically, the exosomes suppressed the CCI-induced activation of TLR2/MyD88/NF-κB signaling pathway, while GDNF knockdown impaired their analgesic effects on CCI rat. BMSCs-derived exosomes may alleviate CCI-induced neuropathic pain and inflammation in rats by transporting GDNF.


Subject(s)
Disease Models, Animal , Exosomes , Glial Cell Line-Derived Neurotrophic Factor , Hyperalgesia , Mesenchymal Stem Cells , Myeloid Differentiation Factor 88 , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 2 , Animals , Exosomes/transplantation , Rats , Glial Cell Line-Derived Neurotrophic Factor/genetics , Male , Hyperalgesia/etiology , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/biosynthesis , Neuralgia/etiology , Neuralgia/therapy , Cytokines , Mesenchymal Stem Cell Transplantation , Bone Marrow Cells , Sciatic Neuropathy , Constriction
3.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995011

ABSTRACT

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Subject(s)
Axons , Glial Cell Line-Derived Neurotrophic Factor , Nerve Regeneration , Schwann Cells , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Schwann Cells/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Axons/metabolism , Rats , Rats, Sprague-Dawley , Female , Astrocytes/metabolism
4.
Exp Gerontol ; 194: 112517, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986856

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 µl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Hippocampus , Imipramine , Neurogenesis , Organelle Biogenesis , Rats, Wistar , Streptozocin , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Male , Neurogenesis/drug effects , Imipramine/pharmacology , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Doublecortin Protein , Neuroinflammatory Diseases/drug therapy , Memory/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Memory Disorders/drug therapy , Neuroprotective Agents/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Cytokines/metabolism
5.
Glia ; 72(10): 1840-1861, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38961612

ABSTRACT

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.


Subject(s)
Mice, Transgenic , Pancreatic Neoplasms , Schwann Cells , Animals , Schwann Cells/metabolism , Schwann Cells/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cellular Reprogramming/physiology , Pancreas/pathology , Pancreas/innervation , Pancreas/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Neurons/pathology , Mice, Inbred C57BL
6.
Sci Rep ; 14(1): 17639, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39085346

ABSTRACT

Glioblastoma is the most common primary brain tumor in adults, characterized by an inherent aggressivity and resistance to treatment leading to poor prognoses. While some resistance mechanisms have been elucidated, a deeper understanding of these mechanisms is needed to increase therapeutic efficacy. In this study we first discovered glial-cell derived neurotrophic factor (GDNF) to be upregulated in patient-derived glioblastoma spheroid cultures after chemotherapeutic temozolomide treatment, through RNA-Seq experiments. Therefore, we investigated the role of the GDNF/GDNF receptor alpha 1 (GFRA1) signaling pathway as a resistance mechanism to chemotherapy with temozolomide and lomustine, as well as irradiation using patient-derived glioblastoma spheroid cultures. With qPCR experiments we showed a consistent upregulation of GDNF and its primary receptor GFRA1 following all three lines of treatment. Moreover, CRISPR/Cas9 knock-outs of GDNF in two patient-derived models sensitized these cells to chemotherapy treatment, but not radiotherapy. The increased sensitivity was completely reversed by the addition of exogeneous GDNF, confirming the key role of this factor in chemoresistance. Finally, a CRISPR KO of GFRA1 demonstrated a similar increased sensitivity to temozolomide and lomustine treatment, as well as radiotherapy. Together, our findings support the role of the GDNF/GFRA1 signaling pathway in glioblastoma chemo and radioresistance.


Subject(s)
Drug Resistance, Neoplasm , Glial Cell Line-Derived Neurotrophic Factor Receptors , Glial Cell Line-Derived Neurotrophic Factor , Glioblastoma , Radiation Tolerance , Signal Transduction , Temozolomide , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Drug Resistance, Neoplasm/genetics , Temozolomide/pharmacology , Radiation Tolerance/genetics , Radiation Tolerance/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Lomustine/pharmacology , Spheroids, Cellular/metabolism , Spheroids, Cellular/drug effects
7.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900896

ABSTRACT

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Integrin alpha6 , Meningeal Neoplasms , Meninges , Neural Pathways , Animals , Female , Humans , Mice , Basement Membrane/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Integrin alpha6/metabolism , Laminin/metabolism , Macrophages/metabolism , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Meninges/pathology , Neoplasm Invasiveness , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Signal Transduction , Neural Pathways/metabolism , Mice, SCID , Mice, Knockout
8.
J Agric Food Chem ; 72(26): 14653-14662, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860840

ABSTRACT

The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.


Subject(s)
Colitis, Ulcerative , Glial Cell Line-Derived Neurotrophic Factor , Intestinal Mucosa , Neuroglia , Zonula Occludens-1 Protein , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Mice , Humans , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Male , Neuroglia/drug effects , Neuroglia/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Proto-Oncogene Proteins c-ret/metabolism , Proto-Oncogene Proteins c-ret/genetics , Mice, Inbred C57BL , Coumarins/pharmacology , Coumarins/chemistry , Signal Transduction/drug effects , Glycyrrhiza/chemistry
9.
Int. j. morphol ; 42(3): 876-890, jun. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1564627

ABSTRACT

SUMMARY: Stroke is the leading cause of acquired physical disability in adults and second leading cause of mortality throughout the world. Treatment strategies to curb the effects of stroke would be of great benefit. Pongamia pinnata is a recent attraction in medicine, owing to its abundant medicinal benefits with minimal side effects. The present study aimed to examine acute and subacute effect of Pongamia pinnata leaf extract on transient cerebral hypoperfusion and reperfusion (tCHR) in Wistar rats. 24 adult Wistar rats (12 each for acute and subacute study) were divided in to four groups each viz normal control group, tCHR + NS group, tCHR + 200mg/kg bw and tCHR + 400mg/kg bw groups. Cerebral ischemia induction was carried out by bilateral common carotid artery occlusion and reperfusion. Ethanolic extract of Pongamia pinnata leaves were orally administered for 7 days and 21 days after the surgical procedure for acute and subacute study respectively. Behavioural analysis, histological assessment, and estimation of mRNA levels of HIF-1, GDNF, BDNF and NF-kB were performed. In both acute and subacute study, there was significant improvement in the beam walking assay, neuronal count, decreased neuronal damage in histological sections and higher mRNA expression of BDNF and GDNF in the treatment groups. There was no significant difference in the expression of HIF1 and NF-kB. Thus, Pongamia pinnata has excellent neurorestorative property reversing many of the effects of ischemic stroke induced by tCHR in rats with the underlying mechanism being an improvement in the expression of neurotrophic factors GDNF and BDNF.


El ataque cerebrovascular es la principal causa de discapacidad física adquirida en adultos y la segunda causa de mortalidad en todo el mundo. Las estrategias de tratamiento para frenar los efectos del ataque cerebrovascular serían de gran beneficio. Pongamia pinnata es una atracción reciente en la medicina, debido a sus abundantes beneficios medicinales con mínimos efectos secundarios. El presente estudio tuvo como objetivo examinar el efecto agudo y subagudo del extracto de hoja de Pongamia pinnata sobre la hipoperfusión y reperfusión cerebral transitoria (tCHR) en ratas Wistar. Se dividieron 24 ratas Wistar adultas (12 cada una para el estudio agudo y subagudo) en cuatro grupos, el grupo control normal, el grupo tCHR + NS, los grupos tCHR + 200 mg/kg de peso corporal y tCHR + 400 mg/kg de peso corporal. La inducción de la isquemia cerebral se llevó a cabo mediante oclusión y reperfusión bilateral de la arteria carótida común. El extracto etanólico de hojas de Pongamia pinnata se administró por vía oral durante 7 días y 21 días después del procedimiento quirúrgico para estudio agudo y subagudo respectivamente. Se realizaron análisis de comportamiento, evaluación histológica y estimación de los niveles de ARNm de HIF-1, GDNF, BDNF y NF-kB. Tanto en el estudio agudo como en el subagudo, hubo una mejora significativa en el ensayo de desplazamiento del haz, el recuento neuronal, una disminución del daño neuronal en las secciones histológicas y una mayor expresión de ARNm de BDNF y GDNF en los grupos con tratamiento. No hubo diferencias significativas en la expresión de HIF1 y NF-kB. Por lo tanto, Pongamia pinnata tiene una excelente propiedad neurorestauradora que revierte muchos de los efectos del ataque cerebrovascular isquémico inducido por tCHR en ratas, siendo el mecanismo subyacente una mejora en la expresión de los factores neurotróficos GDNF y BDNF.


Subject(s)
Animals , Rats , Plant Extracts/administration & dosage , Stroke/drug therapy , Millettia/chemistry , Plant Extracts/pharmacology , Cerebral Cortex/drug effects , Brain Ischemia/drug therapy , Administration, Oral , NF-kappa B , Rats, Wistar , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Hypoxia-Inducible Factor 1/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Real-Time Polymerase Chain Reaction , Nerve Growth Factors/administration & dosage
10.
Arch Dermatol Res ; 316(6): 235, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795154

ABSTRACT

The aim of this study is to delineate the expression patterns of prolyl cis-trans isomerase NIMA-interacting protein 1 (Pin1), Glial cell-derived neurotrophic factor (GDNF), and Angiotensin II (ANG II) during the process of wound repair, and to ascertain the effects of Pin1, GDNF, and ANG II on the healing of wounds in a rat model. A total of 18 rats were allocated into three groups-sham (control), DMSO (vehicle control), and Pin1 inhibitor (treatment with juglone)-with six animals in each group. An animal model of wound healing was established, followed by the intraperitoneal administration of juglone. Tissue samples from the wounds were subsequently collected for histopathological evaluation. Expression levels of Pin1, GDNF, and Ang II were quantified. In addition, an in vitro model of wound healing was created using human umbilical vein endothelial cells (HUVEC), to assess cell proliferation, migration, and tube formation under conditions of juglone pre-treatment. The expression levels of Pin1, GDNF, and ANG II were notably elevated on 7-, and 10- days post-wound compared to those measured on 3-day. Contrastingly, pre-treatment with juglone significantly inhibited the expression of these molecules. Histological analyses, including HE (Hematoxylin and Eosin), Masson's trichrome, and EVG (Elastic van Gieson) staining, demonstrated that vascular angiogenesis, as well as collagen and elastin deposition, were substantially reduced in the juglone pre-treated group when compared to the normal group. Further, immunohistochemical analysis revealed a considerable decrease in CD31 expression in the juglone pre-treatment group relative to the normal control group. Pin1 serves as a pivotal facilitator of wound repair. The findings indicate that the modulation of Pin1, GDNF, and ANG II expression impacts the wound healing process in rats, suggesting potential targets for therapeutic intervention in human wound repair.


Subject(s)
Angiotensin II , Cell Proliferation , Glial Cell Line-Derived Neurotrophic Factor , Human Umbilical Vein Endothelial Cells , NIMA-Interacting Peptidylprolyl Isomerase , Naphthoquinones , Wound Healing , Animals , Wound Healing/drug effects , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Humans , Rats , Naphthoquinones/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Male , Cell Proliferation/drug effects , Angiotensin II/metabolism , Cell Movement/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Skin/pathology , Skin/metabolism , Skin/injuries , Skin/drug effects , Adaptor Proteins, Signal Transducing
11.
Arch Dermatol Res ; 316(6): 241, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795165

ABSTRACT

Lichen simplex chronicus (LSC) presents a challenge in dermatology due to its elusive pathogenic mechanisms. While associations between circulating inflammatory cytokines and LSC were observed, the definitive causal dynamics remain to be elucidated. Our study used a two-sample Mendelian randomization (MR) approach to investigate causal relationships. We applied a suite of MR methodologies, including IVW, Weighted Median, MR-Egger, Weighted Mode, Simple Mode, MR-PRESSO, and the Steiger test, to ensure robust causal inference. Our analysis confirmed the causal impact of genetically determined cytokine levels on LSC risk, particularly MMP-10 (OR = 0.493, P = 0.004) and DNER (OR = 0.651, P = 0.043) in risk attenuation. We also found a positive causal correlation between GDNF levels (OR = 1.871, P = 0.007) and LSC prevalence. Notably, bidirectional causality was observed between DNER and LSC. Consistency across various MR analyses and sensitivity analyses confirmed the absence of horizontal pleiotropy, validating the causal estimates. This pioneering MR investigation unveils a novel genetically anchored causal relationship between the circulating levels of MMP-10, DNER, and GDNF and LSC risk. Although further validation is requisite, our findings augment the understanding of cytokine mediation in LSC and underscore prospective avenues for research.


Subject(s)
Cytokines , Glial Cell Line-Derived Neurotrophic Factor , Mendelian Randomization Analysis , Neurodermatitis , Humans , Cytokines/blood , Cytokines/genetics , Neurodermatitis/genetics , Neurodermatitis/epidemiology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/blood , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Risk Factors
12.
Theriogenology ; 224: 1-8, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714023

ABSTRACT

In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.


Subject(s)
Cichlids , Glial Cell Line-Derived Neurotrophic Factor , Ovary , Testis , Tretinoin , Animals , Tretinoin/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Male , Female , Cichlids/genetics , Cichlids/metabolism , Testis/metabolism , Testis/drug effects , Ovary/metabolism , Ovary/drug effects , Phylogeny , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism
13.
Mov Disord ; 39(8): 1412-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718138

ABSTRACT

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Parkinson Disease , Positron-Emission Tomography , Putamen , Humans , Male , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Middle Aged , Parkinson Disease/therapy , Parkinson Disease/metabolism , Putamen/metabolism , Dependovirus/genetics , Genetic Therapy/methods
14.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674063

ABSTRACT

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


Subject(s)
3' Untranslated Regions , Glial Cell Line-Derived Neurotrophic Factor , MicroRNAs , Polymorphism, Single Nucleotide , Schizophrenia , Adult , Female , Humans , Male , Middle Aged , Alleles , Binding Sites , Case-Control Studies , Gene Expression Regulation , Genetic Predisposition to Disease , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , HEK293 Cells , MicroRNAs/genetics , Schizophrenia/genetics , Schizophrenia/metabolism
15.
Pflugers Arch ; 476(6): 963-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563997

ABSTRACT

Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.


Subject(s)
Fibronectins , Kidney , Animals , Humans , Mice , Cell Proliferation , Extracellular Matrix/metabolism , Fibronectins/metabolism , Fibronectins/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Integrin alpha Chains , Integrins/metabolism , Integrins/genetics , Kidney/metabolism , Kidney/embryology , Mice, Inbred C57BL , Wnt Proteins/metabolism , Wnt Proteins/genetics
16.
Transl Psychiatry ; 14(1): 158, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519465

ABSTRACT

Sleep deprivation (DS) is the forced elimination of sleep. While brain-derived neurotrophic factor (BDNF) has been extensively studied in the context of in mood changes following DS, the role of other neurotrophins remains elusive. This study explores the impact of DS on BDNF, glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) at mRNA and protein level, considering their potential links to mood disturbances. The study involved 81 participants subjected to polysomnography (PSG) and DS. Blood samples, mood assessments, and actigraphy data were collected twice, after PSG and DS. NT mRNA expression and serum protein concentrations of BDNF, GDNF, NT3, and NT4 were measured. Participants were divided into Responders and Non-Responders based on mood improvement after DS. DS reduced BDNF mRNA expression in all participants, with no change in serum BDNF protein. GDNF protein decreased in Non-Responders, while Responders exhibited reduced GDNF mRNA. NT3 protein increased in both groups, while NT3 mRNA decreased in Respondents. NT4 protein rose universally post-DS, but NT4 mRNA remained unchanged. Physical activity (PA) negatively correlated with mRNA expression of BDNF, GDNF, and NT3 post-DS. The study's short DS duration and exclusion of immature NT forms limit comprehensive insights. GDNF, together with NT3, might play an important role in mood response to DS. PA during DS seems to impair the mRNA expression of NTs in leukocytes. Future studies on the subject of sleep deprivation might consider investigating the relationship between BDNF and NT4 in the context of their apparent redundancy.


Subject(s)
Brain-Derived Neurotrophic Factor , Glial Cell Line-Derived Neurotrophic Factor , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Sleep Deprivation , RNA, Messenger/genetics , Exercise
17.
Oncogene ; 43(18): 1341-1352, 2024 May.
Article in English | MEDLINE | ID: mdl-38454138

ABSTRACT

Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.


Subject(s)
Exosomes , Glial Cell Line-Derived Neurotrophic Factor , MicroRNAs , Neoplasm Invasiveness , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Exosomes/metabolism , Exosomes/genetics , RNA, Long Noncoding/genetics , Neoplasm Invasiveness/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Animals , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
18.
Curr Gene Ther ; 24(4): 278-291, 2024.
Article in English | MEDLINE | ID: mdl-38310455

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Genetic Therapy , Glial Cell Line-Derived Neurotrophic Factor , Parkinson Disease , Putamen , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy , Aromatic-L-Amino-Acid Decarboxylases/genetics , Genetic Therapy/methods , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Putamen/metabolism , Animals , Levodopa/therapeutic use , Dopamine/metabolism
19.
Methods Cell Biol ; 181: 17-32, 2024.
Article in English | MEDLINE | ID: mdl-38302238

ABSTRACT

Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Zebrafish , Animals , Humans , Zebrafish/genetics , Morpholinos/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Dopamine , Microinjections
20.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309681

ABSTRACT

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Proteomics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Nerve Regeneration , Adipose Tissue , Cell Differentiation , Schwann Cells
SELECTION OF CITATIONS
SEARCH DETAIL