Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Reprod Domest Anim ; 52 Suppl 2: 170-176, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27774720

ABSTRACT

Spermatogenesis is a process in which differentiated cells are produced and the adult stem cell population-known as spermatogonial stem cells (SSCs)-is continuously replenished. However, the molecular mechanisms underlying these processes are not fully understood in the canine species. We addressed this in this study by analysing the expression of specific markers in spermatogonia of seminiferous tubules of canine testes. SSCs at different stages of reproductive development (prepubertal and adult) were examined by immunohistochemistry and flow cytometry. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRA1), deleted in azoospermia-like (DAZL) and promyelocytic leukaemia zinc finger (PLZF) were expressed in SSCs, while stimulated by retinoic acid gene 8 (STRA8) was detected only in undifferentiated spermatogonia in prepubertal testis and differentiated spermatogonia and spermatocytes in adult canine. Octamer-binding transcription factor 4 (OCT4) showed an expression pattern, and the levels did not differ between the groups examined. However, C-kit expression varied as a function of reproductive developmental stage. Our results demonstrate that these proteins play critical roles in the self-renewal and differentiation of SSCs and can serve as markers to identify canine spermatogonia at specific stages of development.


Subject(s)
Dogs/physiology , Proteins/analysis , Spermatogenesis/physiology , Spermatogonia/chemistry , Adult Germline Stem Cells/chemistry , Animals , Biomarkers/analysis , Deleted in Azoospermia 1 Protein , Flow Cytometry/veterinary , Glial Cell Line-Derived Neurotrophic Factor Receptors/analysis , Immunohistochemistry/veterinary , Kruppel-Like Transcription Factors/analysis , Male , RNA-Binding Proteins/analysis , Seminiferous Tubules/cytology , Sexual Maturation , Spermatogonia/growth & development
2.
Biol Reprod ; 86(5): 155, 1-10, 2012 May.
Article in English | MEDLINE | ID: mdl-22262689

ABSTRACT

In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia.


Subject(s)
Spermatogonia/metabolism , Stem Cell Niche/physiology , Animals , Artiodactyla/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/analysis , Leydig Cells/cytology , Leydig Cells/metabolism , Macrophage Colony-Stimulating Factor/biosynthesis , Male , Receptor, Macrophage Colony-Stimulating Factor/analysis , Seminiferous Tubules/cytology , Spermatogenesis/physiology , Spermatogonia/cytology , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL