Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 999
Filter
1.
Clin Invest Med ; 47(2): 23-39, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958477

ABSTRACT

PURPOSE: Over the past 20 years, much of the research on diabetes has focused on pancreatic beta cells. In the last 10 years, interest in the important role of pancreatic alpha cells in the pathogenesis of diabetes, which had previously received little attention, has grown. We aimed to summarize and visualize the hotspot and development trends of pancreatic alpha cells through bibliometric analysis and to provide research direction and future ideas for the treatment of diabetes and other islet-related diseases. METHODS: We used two scientometric software packages (CiteSpace 6.1.R6 and VOSviewer1.6.18) to visualize the information and connection of countries, institutions, authors, and keywords in this field. RESULTS: A total of 532 publications, published in 752 institutions in 46 countries and regions, were included in this analysis. The United States showed the highest output, accounting for 39.3% of the total number of published papers. The most active institution was Vanderbilt University, and the authors with highest productivity came from Ulster University. In recent years, research hotspots have concentrated on transdifferentiation, gene expression, and GLP-1 regulatory function. Visualization analysis shows that research hotspots mainly focus on clinical diseases as well as physiological and pathological mechanisms and related biochemical indicators. CONCLUSIONS: This study provides a review and summary of the literature on pancreatic alpha cells through bibliometric and visual methods and shows research hotspot and development trends, which can guide future directions for research.


Subject(s)
Bibliometrics , Glucagon-Secreting Cells , Humans , Glucagon-Secreting Cells/metabolism , Biomedical Research/trends , Animals , Diabetes Mellitus
2.
Nat Commun ; 15(1): 5567, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956087

ABSTRACT

Diabetes involves the death or dysfunction of pancreatic ß-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that ß-, α-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Islets of Langerhans , Humans , Endoplasmic Reticulum Stress/genetics , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Single-Cell Analysis , Glucagon-Secreting Cells/metabolism , Sequence Analysis, RNA , Transcriptome , Stress, Physiological
3.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879678

ABSTRACT

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Glucagon-Secreting Cells , Glucagon , Mice, Knockout , Signal Transduction , Glucagon/metabolism , Animals , Glucagon-Secreting Cells/metabolism , Mice , GTP-Binding Protein alpha Subunits, Gs/metabolism , Adenosine/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Male , Mice, Inbred C57BL , Islets of Langerhans/metabolism
4.
Sci Rep ; 14(1): 14235, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902357

ABSTRACT

Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting ß cells closely intermingled one another. Current methods for identifying α and ß cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and ß cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and ß cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and ß cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of ß cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.


Subject(s)
Insulin-Secreting Cells , Machine Learning , Humans , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Infrared Rays
5.
Clinics (Sao Paulo) ; 79: 100392, 2024.
Article in English | MEDLINE | ID: mdl-38908048

ABSTRACT

BACKGROUND: This study explored the correlation between pancreatic islet α cell function, as reflected by the plasma glucagon levels, and Diabetic Peripheral Neuropathy (DPN) in patients with Type 2 Diabetes Mellitus (T2DM). METHODS: A total of 358 patients with T2DM were retrospectively enrolled in this study and divided into the Non-DPN (NDPN) group (n = 220) and the DPN group (n = 138). All patients underwent an oral glucose tolerance test to detect levels of blood glucose, insulin and glucagon, and the Area Under the Curve (AUC) for Glucagon (AUCglu) was used to estimate the overall glucagon level. The Peripheral Nerve Conduction Velocity (PNCV), Amplitude (PNCA) and Latency (PNCL) were obtained with electromyography, and their Z scores were calculated. RESULTS: There were significant differences regarding the age, disease duration, serum levels of alanine aminotransferase, aspartate aminotransferase, urea nitrogen, high-density lipoprotein, and 2h-C peptide between these two groups (p < 0.05). The NDPN group had higher glucagon levels at 30, 60 and 120 min and AUCglu (p < 0.05). The Z-scores of PNCV and PNCA showed an increasing trend (p < 0.05), while the Z-score of PNCL showed a decreasing trend (p < 0.05). The glucagon levels were positively correlated with PNCV and PNCA, but negatively correlated with PNCL, with Gluca30min having the strongest correlation (p < 0.05). Gluca30min was independently related to PNCV, PNCL, PNCA and DPN, respectively (p < 0.05). The function of pancreatic α islet cells, as reflected by the plasma glucagon level, is closely related to the occurrence of DPN in T2DM patients. CONCLUSION: Gluca30min may be a potentially valuable independent predictor for the occurrence of DPN.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Glucagon , Glucose Tolerance Test , Neural Conduction , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Male , Middle Aged , Female , Diabetic Neuropathies/blood , Diabetic Neuropathies/physiopathology , Diabetic Neuropathies/etiology , Glucagon/blood , Retrospective Studies , Blood Glucose/analysis , Neural Conduction/physiology , Aged , Adult , Electromyography , Glucagon-Secreting Cells , Insulin/blood , Area Under Curve , Time Factors , Reference Values
6.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786091

ABSTRACT

The dysfunction of α and ß cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and ß cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Animals , Tomography, X-Ray/methods , Mice , Humans , Insulin/metabolism
7.
Am J Physiol Endocrinol Metab ; 327(1): E103-E110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775725

ABSTRACT

The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic ß-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both ß-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in ß-cells through an axis termed α- to ß-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.


Subject(s)
Gastric Inhibitory Polypeptide , Glucagon , Insulin Secretion , Islets of Langerhans , Animals , Humans , Gastric Inhibitory Polypeptide/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Secreting Cells/metabolism , Incretins/metabolism , Insulin/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects
8.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R515-R527, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38618911

ABSTRACT

Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to ß cells by exploiting the high-zinc (Zn2+) concentration in ß cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in ß cells stimulated with the proinflammatory cytokine interleukin 1ß. To assess ß-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive ß cells and mTomato in insulin-negative cells (non-ß cells). Surprisingly, Zn2+ chelation did not confer ß-cell selectivity as (+)-JQ1-DPA was equally effective in both ß and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than ß-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic ß cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in ß cells to accumulate in ß cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.


Subject(s)
Chelating Agents , Insulin-Secreting Cells , Zinc , Animals , Zinc/chemistry , Zinc/pharmacology , Zinc/metabolism , Chelating Agents/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/chemistry , Humans , Male , Azepines/pharmacology , Azepines/chemistry , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Mice, Inbred C57BL , Bromodomain Containing Proteins , Nuclear Proteins
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653360

ABSTRACT

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Subject(s)
Diet, High-Fat , Glucagon-Secreting Cells , Glucagon , Ion Channels , Mice, Knockout , Animals , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Mice , Ion Channels/metabolism , Ion Channels/genetics , Diet, High-Fat/adverse effects , Male , Signal Transduction , Insulin/metabolism , Cell Line , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanotransduction, Cellular , Mice, Inbred C57BL , Proglucagon/metabolism , Proglucagon/genetics , Pyrazines , Thiadiazoles
10.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593829

ABSTRACT

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.


Subject(s)
Glucagon-Secreting Cells , Glucagon , Paracrine Communication , Urocortins , Animals , Urocortins/metabolism , Urocortins/genetics , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Mice , Glucagon/metabolism , Glucose/metabolism , Calcium/metabolism , Male , Mice, Inbred C57BL , Cyclic AMP/metabolism , Somatostatin/pharmacology , Somatostatin/metabolism
11.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632302

ABSTRACT

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Subject(s)
Glucagon-Secreting Cells , Islets of Langerhans , Humans , Pancreas/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Glucagon-Secreting Cells/metabolism , Blood Glucose/metabolism , Insulin Secretion
12.
Front Endocrinol (Lausanne) ; 15: 1376530, 2024.
Article in English | MEDLINE | ID: mdl-38681771

ABSTRACT

Background/Objectives: Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods: We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results: The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions: The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucagon , Glucose , Adult , Aged , Female , Humans , Male , Middle Aged , Administration, Oral , Blood Glucose/metabolism , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucagon/blood , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Glucose/metabolism , Glucose/administration & dosage , Glucose Intolerance/blood , Glucose Intolerance/metabolism , Glucose Tolerance Test , Insulin/blood , Insulin/administration & dosage , Insulin Resistance , Kinetics , Models, Theoretical
13.
Histochem Cell Biol ; 161(6): 449-460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430258

ABSTRACT

The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent ß and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Animals , Cell Survival/drug effects , Apoptosis/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/cytology , Mice , Rats , Cell Proliferation/drug effects , Cells, Cultured , Glucose/metabolism , Glucose/pharmacology , Cell Line , Insulin/metabolism , Glucagon/metabolism
14.
Diabetologia ; 67(7): 1368-1385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38503901

ABSTRACT

AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.


Subject(s)
Casein Kinase II , Glucagon-Secreting Cells , Glucagon , Homeodomain Proteins , Casein Kinase II/metabolism , Casein Kinase II/genetics , Animals , Glucagon/metabolism , Mice , Humans , Glucagon-Secreting Cells/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Male , Cell Line , Insulin/metabolism
15.
PLoS One ; 19(3): e0299821, 2024.
Article in English | MEDLINE | ID: mdl-38517864

ABSTRACT

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , MicroRNAs , Animals , Mice , Cell Transdifferentiation/genetics , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Glucagon , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Mol Cell Endocrinol ; 588: 112202, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552943

ABSTRACT

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.


Subject(s)
Benzhydryl Compounds , Islets of Langerhans , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Female , Phenols/toxicity , Pregnancy , Sheep , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Endocrine Disruptors/toxicity , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Maternal Exposure/adverse effects , Insulin/metabolism , Fetus/drug effects , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology
17.
Am J Physiol Endocrinol Metab ; 326(5): E723-E734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506753

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Mice , Diabetes Mellitus, Type 1/genetics , Single-Cell Analysis/methods , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Insulin-Secreting Cells/metabolism , Sequence Analysis, RNA/methods , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Glucagon-Secreting Cells/metabolism , Female , RNA-Seq/methods , Mice, Inbred C57BL
18.
Peptides ; 175: 171179, 2024 May.
Article in English | MEDLINE | ID: mdl-38360354

ABSTRACT

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Subject(s)
Glucagon-Secreting Cells , Receptors, Gastrointestinal Hormone , Somatostatin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Signal Transduction
19.
PLoS One ; 19(2): e0298660, 2024.
Article in English | MEDLINE | ID: mdl-38412155

ABSTRACT

Insulin dysregulation in horses is characterised by hyperinsulinaemia and/or tissue insulin resistance and is associated with increased risk of laminitis. There is growing evidence in other species that dopamine attenuates insulin release from the pancreas; however, this has yet to be examined in horses. The present study aimed to identify whether there are cells capable of producing or responding to dopamine within the equine gastrointestinal mucosa and pancreas. Tissue samples were collected from the stomach, small and large intestines, and pancreas of six mature horses following euthanasia. Samples of stomach contents and faeces were also collected. Immunohistochemistry was performed to identify tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine production, and dopamine D2 receptors in tissue sections. Additional immunostaining for glucagon, insulin and chromogranin A was performed to identify α cells, ß cells and enteroendocrine cells, respectively. Gastric parietal cells expressed both TH and D2 receptors, indicating that they are capable of both producing and responding to dopamine. Dopamine was quantified in stomach contents and faeces by high-performance liquid chromatography with electrochemical detection, with similar concentrations found at both sites. Dopamine D2 receptors were expressed in duodenal epithelial cells but not more distally. A subset of enteroendocrine cells, located sporadically along the gastrointestinal tract, were found to be immunopositive for the D2 receptor. In pancreatic islets, TH was present in α cells, while D2 receptors were strongly expressed in ß cells and variably expressed in α cells. These findings are consistent with studies of other species; however, dynamic studies are required to further elucidate the role of dopamine in the modulation of insulin and glucagon secretion in horses. This descriptive study provides preliminary evidence for a potential role of dopamine to act as a paracrine messenger in the gastrointestinal mucosa and endocrine pancreas of horses.


Subject(s)
Dopamine , Glucagon-Secreting Cells , Animals , Horses , Receptors, Dopamine D2 , Glucagon , Pancreas , Gastrointestinal Tract/chemistry , Insulin , Mucous Membrane , Receptors, Dopamine D1
20.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266068

ABSTRACT

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , DNA Methylation , Pancreas/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL