Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 717
Filter
1.
Clin Invest Med ; 47(2): 23-39, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958477

ABSTRACT

PURPOSE: Over the past 20 years, much of the research on diabetes has focused on pancreatic beta cells. In the last 10 years, interest in the important role of pancreatic alpha cells in the pathogenesis of diabetes, which had previously received little attention, has grown. We aimed to summarize and visualize the hotspot and development trends of pancreatic alpha cells through bibliometric analysis and to provide research direction and future ideas for the treatment of diabetes and other islet-related diseases. METHODS: We used two scientometric software packages (CiteSpace 6.1.R6 and VOSviewer1.6.18) to visualize the information and connection of countries, institutions, authors, and keywords in this field. RESULTS: A total of 532 publications, published in 752 institutions in 46 countries and regions, were included in this analysis. The United States showed the highest output, accounting for 39.3% of the total number of published papers. The most active institution was Vanderbilt University, and the authors with highest productivity came from Ulster University. In recent years, research hotspots have concentrated on transdifferentiation, gene expression, and GLP-1 regulatory function. Visualization analysis shows that research hotspots mainly focus on clinical diseases as well as physiological and pathological mechanisms and related biochemical indicators. CONCLUSIONS: This study provides a review and summary of the literature on pancreatic alpha cells through bibliometric and visual methods and shows research hotspot and development trends, which can guide future directions for research.


Subject(s)
Bibliometrics , Glucagon-Secreting Cells , Humans , Glucagon-Secreting Cells/metabolism , Biomedical Research/trends , Animals , Diabetes Mellitus
2.
Nat Commun ; 15(1): 5567, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956087

ABSTRACT

Diabetes involves the death or dysfunction of pancreatic ß-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that ß-, α-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Islets of Langerhans , Humans , Endoplasmic Reticulum Stress/genetics , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Single-Cell Analysis , Glucagon-Secreting Cells/metabolism , Sequence Analysis, RNA , Transcriptome , Stress, Physiological
3.
Mol Metab ; 87: 101990, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009220

ABSTRACT

OBJECTIVES: This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS: We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS: Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in ß-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS: Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased ß-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.


Subject(s)
Cellular Senescence , Glucagon-Secreting Cells , Insulin-Secreting Cells , Transcriptome , Animals , Mice , Insulin-Secreting Cells/metabolism , Cellular Senescence/genetics , Glucagon-Secreting Cells/metabolism , Mice, Inbred C57BL , Up-Regulation , Somatostatin-Secreting Cells/metabolism , Male , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Aging/genetics , Aging/metabolism , Islets of Langerhans/metabolism , Animals, Newborn , Antigens, CD/metabolism , Antigens, CD/genetics
4.
Sci Rep ; 14(1): 14235, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902357

ABSTRACT

Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting ß cells closely intermingled one another. Current methods for identifying α and ß cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and ß cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and ß cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and ß cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of ß cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.


Subject(s)
Insulin-Secreting Cells , Machine Learning , Humans , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Infrared Rays
5.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879678

ABSTRACT

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Glucagon-Secreting Cells , Glucagon , Mice, Knockout , Signal Transduction , Glucagon/metabolism , Animals , Glucagon-Secreting Cells/metabolism , Mice , GTP-Binding Protein alpha Subunits, Gs/metabolism , Adenosine/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Male , Mice, Inbred C57BL , Islets of Langerhans/metabolism
6.
Diabetes ; 73(9): 1440-1446, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38869455

ABSTRACT

The T allele at rs7903146 in TCF7L2 increases the rate of conversion from prediabetes to type 2 diabetes. This has been associated with impaired ß-cell function and with defective suppression of α-cell secretion by glucose. However, the temporal relationship of these abnormalities is uncertain. To study the longitudinal changes in islet function, we recruited 128 subjects, with 67 homozygous for the diabetes-associated allele (TT) at rs7903146 and 61 homozygous for the protective allele. Subjects were studied on two occasions, 3 years apart, using an oral 75-g glucose challenge. The oral minimal model was used to quantitate ß-cell function; the glucagon secretion rate was estimated from deconvolution of glucagon concentrations. Glucose tolerance worsened in subjects with the TT genotype. This was accompanied by impaired postchallenge glucagon suppression but appropriate ß-cell responsivity to rising glucose concentrations. These data suggest that α-cell abnormalities associated with the TT genotype (rs7903146) occur early and may precede ß-cell dysfunction in people as they develop glucose intolerance and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , Glucose Tolerance Test , Insulin-Secreting Cells , Transcription Factor 7-Like 2 Protein , Humans , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Male , Female , Adult , Middle Aged , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Longitudinal Studies , Glucagon-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Genotype , Blood Glucose/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Alleles
7.
Diabetes ; 73(9): 1426-1439, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38870025

ABSTRACT

Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known ß-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from ß/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of ß/δ-cells.


Subject(s)
Cyclic AMP , Glucagon-Secreting Cells , Glucagon , Leucine , Paracrine Communication , Animals , Glucagon/metabolism , Cyclic AMP/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Mice , Humans , Leucine/pharmacology , Paracrine Communication/drug effects , Glucose/metabolism , Keto Acids/pharmacology , Male , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Mice, Inbred C57BL , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism
8.
Stem Cells Transl Med ; 13(8): 776-790, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38864709

ABSTRACT

Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to ß-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Forkhead Box Protein O3 , Glucagon , Mesenchymal Stem Cells , Mitochondria , Signal Transduction , Sirtuin 1 , Sirtuin 1/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Forkhead Box Protein O3/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Mitochondria/metabolism , Mice , Humans , Glucagon/metabolism , Mesenchymal Stem Cell Transplantation/methods , Male , Glucagon-Secreting Cells/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Mice, Inbred C57BL
9.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786091

ABSTRACT

The dysfunction of α and ß cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and ß cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Animals , Tomography, X-Ray/methods , Mice , Humans , Insulin/metabolism
10.
Am J Physiol Endocrinol Metab ; 327(1): E103-E110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775725

ABSTRACT

The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic ß-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both ß-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in ß-cells through an axis termed α- to ß-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.


Subject(s)
Gastric Inhibitory Polypeptide , Glucagon , Insulin Secretion , Islets of Langerhans , Animals , Humans , Gastric Inhibitory Polypeptide/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Secreting Cells/metabolism , Incretins/metabolism , Insulin/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects
11.
Diabetologia ; 67(8): 1663-1682, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814444

ABSTRACT

AIMS/HYPOTHESIS: Prediabetic pancreatic beta cells can adapt their function to maintain normoglycaemia for a limited period of time, after which diabetes mellitus will manifest upon beta cell exhaustion. Understanding sex-specific beta cell compensatory mechanisms and their failure in prediabetes (impaired glucose tolerance) is crucial for early disease diagnosis and individualised treatment. Our aims were as follows: (1) to determine the key time points of the progression from beta cells' functional adaptations to their failure in vivo; and (2) to mechanistically explain in vivo sex-specific beta cell compensatory mechanisms and their failure in prediabetes. METHODS: Islets from male and female transgenic Ins1CreERT2-GCaMP3 mice were transplanted into the anterior chamber of the eye of 10- to 12-week-old sex-matched C57BL/6J mice. Recipient mice were fed either a control diet (CD) or western diet (WD) for a maximum of 4 months. Metabolic variables were evaluated monthly. Beta cell cytoplasmic free calcium concentration ([Ca2+]i) dynamics were monitored in vivo longitudinally by image fluorescence of the GCaMP3 reporter islets. Global islet beta cell [Ca2+]i dynamics in line with single beta cell [Ca2+]i analysis were used for beta cell coordination studies. The glucagon receptor antagonist L-168,049 (4 mmol/l) was applied topically to the transplanted eyes to evaluate in vivo the effect of glucagon on beta cell [Ca2+]idynamics. Human islets from non-diabetic women and men were cultured for 24 h in either a control medium or high-fat/high-glucose medium in the presence or absence of the glucagon receptor antagonist L-168,049. [Ca2+]i dynamics of human islets were evaluated in vitro after 1 h exposure to Fura-10. RESULTS: Mice fed a WD for 1 month displayed increased beta cell [Ca2+]i dynamics linked to enhanced insulin secretion as a functional compensatory mechanism in prediabetes. Recruitment of inactive beta cells in WD-fed mice explained the improved beta cell function adaptation observed in vivo; this occurred in a sex-specific manner. Mechanistically, this was attributable to an intra-islet structural rearrangement involving alpha cells. These sex-dependent cytoarchitecture reorganisations, observed in both mice and humans, induced enhanced paracrine input from adjacent alpha cells, adjusting the glucose setpoint and amplifying the insulin secretion pathway. When WD feeding was prolonged, female mice maintained the adaptive mechanism due to their intrinsically high proportion of alpha cells. In males, [Ca2+]i dynamics progressively declined subsequent to glucose stimulation while insulin secretion continue to increase, suggesting uncoordinated beta cell function as an early sign of diabetes. CONCLUSIONS/INTERPRETATION: We identified increased coordination of [Ca2+]i dynamics as a beta cell functional adaptation mechanisms in prediabetes. Importantly, we uncovered the mechanisms by which sex-dependent beta cell [Ca2+]i dynamics coordination is orchestrated by an intra-islet structure reorganisation increasing the paracrine input from alpha cells on beta cell function. Moreover, we identified reduced [Ca2+]i dynamics coordination in response to glucose as an early sign of diabetes preceding beta cell secretory dysfunction, with males being more vulnerable. Alterations in coordination capacity of [Ca2+]i dynamics may thus serve as an early marker for beta cell failure in prediabetes.


Subject(s)
Calcium , Glucagon-Secreting Cells , Insulin-Secreting Cells , Mice, Inbred C57BL , Mice, Transgenic , Prediabetic State , Animals , Female , Male , Insulin-Secreting Cells/metabolism , Mice , Prediabetic State/metabolism , Calcium/metabolism , Glucagon-Secreting Cells/metabolism , Humans , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation
12.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632302

ABSTRACT

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Subject(s)
Glucagon-Secreting Cells , Islets of Langerhans , Humans , Pancreas/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Glucagon-Secreting Cells/metabolism , Blood Glucose/metabolism , Insulin Secretion
13.
Front Endocrinol (Lausanne) ; 15: 1376530, 2024.
Article in English | MEDLINE | ID: mdl-38681771

ABSTRACT

Background/Objectives: Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods: We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results: The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions: The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucagon , Glucose , Adult , Aged , Female , Humans , Male , Middle Aged , Administration, Oral , Blood Glucose/metabolism , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucagon/blood , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Glucose/metabolism , Glucose/administration & dosage , Glucose Intolerance/blood , Glucose Intolerance/metabolism , Glucose Tolerance Test , Insulin/blood , Insulin/administration & dosage , Insulin Resistance , Kinetics , Models, Theoretical
14.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593829

ABSTRACT

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.


Subject(s)
Glucagon-Secreting Cells , Glucagon , Paracrine Communication , Urocortins , Animals , Urocortins/metabolism , Urocortins/genetics , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/drug effects , Mice , Glucagon/metabolism , Glucose/metabolism , Calcium/metabolism , Male , Mice, Inbred C57BL , Cyclic AMP/metabolism , Somatostatin/pharmacology , Somatostatin/metabolism
15.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R515-R527, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38618911

ABSTRACT

Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to ß cells by exploiting the high-zinc (Zn2+) concentration in ß cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in ß cells stimulated with the proinflammatory cytokine interleukin 1ß. To assess ß-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive ß cells and mTomato in insulin-negative cells (non-ß cells). Surprisingly, Zn2+ chelation did not confer ß-cell selectivity as (+)-JQ1-DPA was equally effective in both ß and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than ß-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic ß cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in ß cells to accumulate in ß cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.


Subject(s)
Chelating Agents , Insulin-Secreting Cells , Zinc , Animals , Zinc/chemistry , Zinc/pharmacology , Zinc/metabolism , Chelating Agents/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/chemistry , Humans , Male , Azepines/pharmacology , Azepines/chemistry , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Mice, Inbred C57BL , Bromodomain Containing Proteins , Nuclear Proteins
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653360

ABSTRACT

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Subject(s)
Diet, High-Fat , Glucagon-Secreting Cells , Glucagon , Ion Channels , Mice, Knockout , Animals , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Mice , Ion Channels/metabolism , Ion Channels/genetics , Diet, High-Fat/adverse effects , Male , Signal Transduction , Insulin/metabolism , Cell Line , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanotransduction, Cellular , Mice, Inbred C57BL , Proglucagon/metabolism , Proglucagon/genetics , Pyrazines , Thiadiazoles
17.
Mol Cell Endocrinol ; 588: 112202, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552943

ABSTRACT

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.


Subject(s)
Benzhydryl Compounds , Islets of Langerhans , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Female , Phenols/toxicity , Pregnancy , Sheep , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Endocrine Disruptors/toxicity , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Maternal Exposure/adverse effects , Insulin/metabolism , Fetus/drug effects , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology
18.
Am J Physiol Endocrinol Metab ; 326(5): E723-E734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506753

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Mice , Diabetes Mellitus, Type 1/genetics , Single-Cell Analysis/methods , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Insulin-Secreting Cells/metabolism , Sequence Analysis, RNA/methods , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Glucagon-Secreting Cells/metabolism , Female , RNA-Seq/methods , Mice, Inbred C57BL
19.
Diabetologia ; 67(7): 1368-1385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38503901

ABSTRACT

AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.


Subject(s)
Casein Kinase II , Glucagon-Secreting Cells , Glucagon , Homeodomain Proteins , Casein Kinase II/metabolism , Casein Kinase II/genetics , Animals , Glucagon/metabolism , Mice , Humans , Glucagon-Secreting Cells/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Male , Cell Line , Insulin/metabolism
20.
PLoS One ; 19(3): e0299821, 2024.
Article in English | MEDLINE | ID: mdl-38517864

ABSTRACT

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , MicroRNAs , Animals , Mice , Cell Transdifferentiation/genetics , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Glucagon , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL