Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.350
Filter
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182703

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Macrophages , SARS-CoV-2 , Virus Replication , Animals , Mice , RAW 264.7 Cells , Virus Replication/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Mice, Transgenic , Pogostemon/chemistry , Cytokines/metabolism , Apoptosis/drug effects , Lung/drug effects , Lung/virology , Lung/pathology , Glucosides/pharmacology , Glucosides/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Humans
2.
Gene ; 932: 148893, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39197797

ABSTRACT

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Subject(s)
Carotenoids , Crocus , Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Profiling/methods , Cyclohexenes/metabolism , Transcriptome , Terpenes/metabolism , Glucosides/metabolism , Glucosides/biosynthesis
3.
J Physiol Sci ; 74(1): 48, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342112

ABSTRACT

Although sympathetic suppression is considered one of the mechanisms for cardioprotection afforded by sodium-glucose cotransporter 2 (SGLT2) inhibitors, whether SGLT2 inhibition acutely modifies sympathetic arterial pressure (AP) regulation remains unclear. We examined the acute effect of an SGLT2 inhibitor, empagliflozin (10 mg/kg), on open-loop baroreflex static characteristics in streptozotocin (STZ)-induced type 1 diabetic and control (CNT) rats (n = 9 each). Empagliflozin significantly increased urine flow [CNT: 25.5 (21.7-31.2) vs. 55.9 (51.0-64.5), STZ: 83.4 (53.7-91.7) vs. 121.2 (57.0-136.0) µL·min-1·kg-1, median (1st-3rd quartiles), P < 0.001 for empagliflozin and STZ]. Empagliflozin decreased the minimum sympathetic nerve activity (SNA) [CNT: 15.7 (6.8-18.4) vs. 10.5 (2.9-19.0), STZ: 36.9 (25.7-54.9) vs. 32.8 (15.1-37.5) %, P = 0.021 for empagliflozin and P = 0.003 for STZ], but did not significantly affect the peripheral arc characteristics assessed by the SNA-AP relationship. Despite the significant increase in urine flow and changes in several baroreflex parameters, empagliflozin preserved the overall sympathetic AP regulation in STZ-induced diabetic rats. The lack of a significant change in the peripheral arc may minimize reflex sympathetic activation, thereby enhancing a cardioprotective benefit of empagliflozin.


Subject(s)
Baroreflex , Benzhydryl Compounds , Diabetes Mellitus, Experimental , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Sympathetic Nervous System , Animals , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Baroreflex/drug effects , Male , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/drug therapy , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Blood Pressure/drug effects , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/drug therapy , Streptozocin , Rats, Wistar , Urination/drug effects
4.
Int Heart J ; 65(5): 913-928, 2024.
Article in English | MEDLINE | ID: mdl-39343595

ABSTRACT

In addition to its antihypertensive and diuretic effects, hydrochlorothiazide also demonstrates additional cardioprotective properties; however, the existence of a synergistic interaction between dapagliflozin and hydrochlorothiazide remains unclear.To establish a rat model of heart failure for investigating the effects and mechanisms of dapagliflozin in combination with hydrochlorothiazide during early intervention, H9c2 cells were cultured to validate their in vitro efficacy. The combination group exhibits a synergistic improvement in hemodynamics, ejection fraction, and a reduction in plasma B-type natriuretic peptide concentration. This combination effectively decreases collagen volume fraction and the expression of collagen I and III, p47phox, p67phox, NF-κB p65, Bax, and caspase-3. The combination group demonstrates a synergistic effect in enhancing cardiac function, attenuating oxidative stress and inflammation. The in vitro effects of the combination were demonstrated in H9c2 cardiomyocytes. In addition, the combination exhibits a more pronounced inhibitory effect on NHE1 expression. The expression of NHE1 in H9c2 cells is inhibited by hydrochlorothiazide, thereby alleviating the consequences of NHE1 overexpression. The results of molecular docking and kinetic simulations indicate a strong binding affinity (-6.1 kcal/mol) between hydrochlorothiazide and NHE1, resulting in the formation of a stable conformation. This may elucidate the underlying mechanism responsible for the synergistic effects of drugs.The combination of dapagliflozin and hydrochlorothiazide has synergistic effects on improving cardiac function, oxidative stress, and inflammation in rats with heart failure. Hydrochlorothiazide binds to and inhibits the expression of NHE1, thereby enhancing dapagliflozin's inhibitory effect on NHE activity. This mechanism potentially elucidates its enhanced cardioprotective effects.


Subject(s)
Benzhydryl Compounds , Glucosides , Heart Failure , Hydrochlorothiazide , Myocardial Infarction , Ventricular Remodeling , Animals , Heart Failure/drug therapy , Heart Failure/metabolism , Hydrochlorothiazide/pharmacology , Hydrochlorothiazide/administration & dosage , Glucosides/pharmacology , Glucosides/administration & dosage , Rats , Benzhydryl Compounds/pharmacology , Ventricular Remodeling/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Male , Drug Therapy, Combination , Disease Models, Animal , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
5.
Phytomedicine ; 134: 155946, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39276538

ABSTRACT

BACKGROUND: Bronchial asthma is a chronic condition characterized by airway inflammation and remodeling, which pose complex pathophysiological challenges. Autophagy has been identified as a practical strategy to regulate inflammation and remodeling processes in chronic inflammatory diseases with pathological characteristics, such as asthma. PF (Paeoniflorin) is a potential new autophagy regulatory compound. Previous studies have reported that PF can inhibit airway inflammation to alleviate allergic asthma, but whether this is mediated through the regulation of autophagy and the molecular mechanism of action remains unclear. PURPOSE: The aim of this study was to evaluate the inhibitory effect of natural small molecule PF on asthma by regulating epithelial autophagy. METHODS: The rat asthma model was established through intraperitoneal injection of OVA and aluminum hydroxide suspension, followed by atomized inhalation of OVA for a period of two weeks. Following treatment with PF, histopathology was observed using Masson and H&E staining, while airway Max Rrs was evaluated using a pulmonary function apparatus. Levels of inflammatory cells in BALF were detected using a blood cell analyzer, and levels of inflammatory factors in BALF were detected through Elisa. Expressions of p-PRAS40 and p-Raptor were observed through immunohistochemistry, and levels of Beclin1 and LC3B were observed through immunofluorescence. The structure and quantity of autophagosomes and autophagolysosomal were observed through TEM. An autophagy model of 16HBE cells was established after treatment with 10ng/mL IL13 for 30 minutes. PRAS40 (AKT1S1) overexpression and mutation of PF and Raptor binding site (K207M& L302I& Q417H) were introduced in 16HBE cells. Autophagy in cells was measured by mFRP-GFP-LC3 ADV fluorescent tracer. The binding sites of PF and Raptor were analyzed using the Autodock Tool. The p-mTOR, p-Raptor, p-PRAS40, LC3II/LC3I were detected through Western blot, and interaction between PRAS40-Raptor and Raptor-mTOR was detected through Co-IP. RESULTS: The results showed that PF effectively reduced airway inflammation, improved airway pathological changes and remodeling, and maintained lung function. Additionally, PF was found to reverse excessive autophagy in airway epithelial cells. Interestingly, PF activated the mTORC1 subunit PRAS40 and Raptor in airway epithelial cells by regulating their phosphorylation. PRAS40 is an endogenous mTOR inhibitor that promotes autophagy. PF competitively binds Raptor to PRAS40, promoting Raptor-mTOR interactions to activate mTORC1, an outcome that can be reversed by PRAS40 overexpression and site-specific amino acid codon mutations in Raptor. CONCLUSION: These findings suggest that PF intervention and inhibition of PRAS40-Raptor interaction are effective treatments for bronchial asthma. By activating mTORC1, PF effectively reverses excessive autophagy in airway epithelial cells, leading to improved airway function and reduced inflammation.


Subject(s)
Asthma , Autophagy , Epithelial Cells , Glucosides , Mechanistic Target of Rapamycin Complex 1 , Monoterpenes , Animals , Humans , Male , Rats , Asthma/drug therapy , Autophagy/drug effects , Beclin-1/metabolism , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Epithelial Cells/drug effects , Glucosides/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/metabolism , Monoterpenes/pharmacology , Ovalbumin , Rats, Sprague-Dawley , Regulatory-Associated Protein of mTOR/metabolism
6.
J Orthop Surg Res ; 19(1): 531, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218922

ABSTRACT

BACKGROUND: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS: The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION: These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.


Subject(s)
Glucosides , NF-E2-Related Factor 2 , Phenols , Weightlessness Simulation , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Phenols/pharmacology , Phenols/therapeutic use , NF-E2-Related Factor 2/metabolism , Mice , Weightlessness Simulation/adverse effects , Rats , Male , Heme Oxygenase-1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Weightlessness/adverse effects , Osteogenesis/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Hindlimb Suspension , Bone Resorption/prevention & control , Bone Resorption/etiology , Bone Resorption/metabolism , Bone Density/drug effects , Membrane Proteins
7.
Front Endocrinol (Lausanne) ; 15: 1436217, 2024.
Article in English | MEDLINE | ID: mdl-39247919

ABSTRACT

Objective: Evaluate the effects of sodium-glucose cotransporter 2 inhibitor (SGLT2i) on cardiovascular and cerebrovascular diseases. Methods: Articles of SGLT2i on cardiovascular and cerebrovascular diseases were searched. Two authors independently screened the literature, extracted the data, assessed the quality of the study and performed statistical analyses using Review Manager 5.4. Results: Random-effect model was used to merge the OR values, and the pooled effect showed that SGLT2i had significant preventive effects on cardiovascular death (OR=0.76, 95%CI 0.64 to 0.89), myocardial infarction (OR=0.90, 95%CI 0.84 to 0.96), heart failure (OR=0.69, 95%CI 0.64 to 0.74) and all-cause mortality (OR=0.65, 95%CI 0.58 to 0.73). Empagliflozin, dapagliflozin and canagliflozin all reduced the incidence of heart failure (OR=0.72, 95%CI 0.64 to 0.82; OR=0.56, 95%CI 0.39 to 0.80; OR=0.62, 95%CI 0.53 to 0.73), but only dapagliflozin displayed a favorable effect on inhibiting stroke (OR=0.78, 95%CI 0.63 to 0.98). SGLT2i could prevent stroke (OR=0.86, 95%CI 0.75 to 0.99), heart failure (OR=0.63, 95%CI 0.56 to 0.70) and all-cause mortality (OR=0.64, 95%CI 0.57 to 0.72) compared to DPP-4i. Furthermore, SGLT2i could reduce the incidence of heart failure (OR=0.72, 95%CI 0.67 to 0.77) and cardiovascular death (OR=0.72, 95%CI 0.54 to 0.95) in patients with high-risk factors. Conclusions: SGLT2i affects cardiovascular death, myocardial infarction, heart failure and all-cause mortality. Only dapagliflozin displayed a favorable effect on inhibiting stroke. SGLT2i could prevent stroke, heart failure and all-cause mortality compared to DPP-4i. In addition, SGLT2i significantly reduced the development of heart failure and cardiovascular death in patients with high-risk factors. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42024532783.


Subject(s)
Cardiovascular Diseases , Cerebrovascular Disorders , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Benzhydryl Compounds/therapeutic use , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/prevention & control , Controlled Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
8.
Phytomedicine ; 134: 156021, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39255724

ABSTRACT

BACKGROUND: Cholestasis (CT) is a group of disorders caused by impaired production, secretion or excretion of bile. This may result in the deposition of bile components in the blood and liver, which in turn causes damage to liver cells and other tissues. If untreated, CT can progress to severe complications, including cirrhosis, liver failure, and potentially life-threatening conditions. OBJECTIVE: This research was intended to elucidate the function and mechanism of Paeoniflorin (PF) in ameliorating ANIT-induced pyroptosis in CT. METHODS: CT models were established in SD rats and HepG2 cells through ANIT treatment. Histological examination was conducted using haematoxylin and eosin (HE) staining to assess the histopathological alterations in the liver. Network pharmacology was employed to identify potential PF targets in CT treatment. To evaluate pyroptosis levels, various methods were used, including serum biochemical analysis, Enzyme-Linked Immunosorbent Assay (ELISA), immunofluorescence (IF), immunohistochemistry (IHC), Western blotting, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The HuProt™ 20K Chip was utilized to pinpoint potential PF-binding targets. PF's direct mechanisms in CT treatment were explored using molecular docking (MD), molecular dynamics simulations (MDS), Cellular Thermal Shift Assay (CETSA), and Surface Plasmon Resonance (SPR). RESULTS: PF administration was found to alleviate ANIT-induced liver pathology, enhance liver function markers, and improve cell viability. Network pharmacology and pyroptosis inhibitor studies suggested that PF might mitigate CT via the NLRP3-dependent pyroptosis pathway. This hypothesis was further supported by Western blotting, IF, and IHC analyses, which indicated PF's potential to inhibit NLRP3-dependent pyroptosis in CT. GSDMD was identified as a target through HuProt™ 20K Chip screening. The binding affinity of PF to GSDMD was validated through MD, MDS, CETSA, and SPR techniques. Additionally, the regulatory impact of GSDMD on downstream inflammatory pathways was confirmed by ELISA and IHC. CONCLUSION: PF exhibited a hepatoprotective effect in ANIT-induced CT, primarily by targeting GSDMD, thereby suppressing ANIT-induced pyroptosis and the subsequent release of inflammatory mediators.


Subject(s)
Cholestasis , Glucosides , Monoterpenes , Phosphate-Binding Proteins , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Pyroptosis/drug effects , Animals , Glucosides/pharmacology , Monoterpenes/pharmacology , Humans , Signal Transduction/drug effects , Male , Rats , Hep G2 Cells , Cholestasis/drug therapy , Cholestasis/chemically induced , Phosphate-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/drug effects , Liver/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Molecular Docking Simulation , Disease Models, Animal , Network Pharmacology , Gasdermins
9.
Molecules ; 29(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275067

ABSTRACT

Chinese Olea europaea leaves, rich in verbascosides, were extracted using ultrasound-assisted extraction (UAE) and wall-breaking extraction (WBE) with deep eutectic solvents (Optimal UAE: 55 min, 200 mL/g liquid-solid ratio, 20% moisture, yielding 206.23 ± 0.58 mg GAE/g total phenolic content (TPC) and 1.59 ± 0.04% verbascoside yield (VAY); Optimal WBE: 140 s, 210 mL/g, 30% moisture, giving 210.69 ± 0.97 mg GAE/g TPC and 1.33 ± 0.2% VAY). HPLC analysis showed that young leaves accumulated higher TPC and phenolic compounds. Among the five olive varieties, Koroneiki and Chemlal showed the highest TPC in UAE, while Arbosana and Chemlal excelled in WBE. WBE yielded a higher TPC and rutin, whereas UAE marginally increased other phenolics. Additionally, the DPPH• assay showed that WBE-extracted verbascoside-rich extracts (VREs) of Chemlal exhibited high antioxidant activity (EC50 of 57 mg/mL), but Koroneiki-VREs exhibited lower activity against the ABTS•+ radical (EC50 of 134 mg/mL). Remarkably, the UAE/WBE-extracted Chemlal-VREs promoted the normal esophageal Het-1A cell line at 25 µg/mL for 24 h; yet, the esophageal cancer Eca-109 cells were sensibly inhibited, especially at 50 µg/mL; and the cell viability decreased dramatically. The results confirmed WBE as a relatively efficient method, and the Chemlal variety may be an excellent source of verbascoside.


Subject(s)
Antioxidants , Glucosides , Olea , Phenols , Plant Extracts , Plant Leaves , Solvents , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Glucosides/isolation & purification , Glucosides/chemistry , Glucosides/pharmacology , Olea/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polyphenols , Solvents/chemistry
10.
J Cell Mol Med ; 28(17): e70091, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39267208

ABSTRACT

Sodium-glucose cotransporter-2 (SGLT-2) is expressed in the kidney and may contribute to anaemia and cardiovascular diseases. The effect of SGLT-2 inhibition on anaemia and vascular endpoints in sickle cell disease (SCD) is unknown. A murine model of SCD was studied to determine the effects of the SGLT-2 inhibitor, empagliflozin, on anaemia and stroke size. The University of Michigan's Precision Health Database was used to evaluate the effect of SGLT-2 inhibitors on anaemia in humans with SCD. SCD mice treated with daily empagliflozin for 8 weeks demonstrated increases in haemoglobin, haematocrit, erythrocyte counts, reticulocyte percentage and erythropoietin compared to vehicle-treated mice. Following photochemical-induced thrombosis of the middle cerebral artery, mice treated with empagliflozin demonstrated reduced stroke size compared to vehicle treated mice. In the electronic health records analysis, haemoglobin, haematocrit and erythrocyte counts increased in human SCD subjects treated with an SGLT-2 inhibitor. SGLT-2 inhibitor treatment of humans and mice with SCD is associated with improvement in anaemic parameters. Empagliflozin treatment is also associated with reduced stroke size in SCD mice suggesting SGLT-2 inhibitor treatment may be beneficial with regard to both anaemia and vascular complications in SCD patients.


Subject(s)
Anemia, Sickle Cell , Anemia , Benzhydryl Compounds , Disease Models, Animal , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Stroke , Animals , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/pathology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Humans , Mice , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Stroke/drug therapy , Stroke/pathology , Male , Anemia/drug therapy , Anemia/etiology , Female , Sodium-Glucose Transporter 2/metabolism , Mice, Inbred C57BL
11.
Biomed Pharmacother ; 179: 117409, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243434

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic retinopathy (DR) is a prevalent complication of diabetes, with a rising global incidence, and can result in significant vision impairment and potential blindness in adults. Corilagin (COR) has been shown to regulate several pathological processes. However, the specific protective role and mechanism of action of COR in DR remain unknown. EXPERIMENTAL APPROACH: The protective effects and mechanisms of COR in DR were examined using the ARPE-19 cell line and C57BL/6 mice. Intraretinal tissue damage and molecular markers were evaluated to investigate the impact of COR on oxidative stress and cell death pathways. KEY RESULTS: In vitro, COR significantly reduced the cytotoxic effects of high glucose (HG) on ARPE-19 cells. Furthermore, COR also effectively decreased HG-induced lipid peroxidation, iron deposition, and ferroptosis and reduced damage to retinal tight junction proteins. Similarly, an in vivo study of streptozotocin (STZ)-induced DM mice showed that the daily gavage of COR for eight weeks notably alleviated DR. Mechanistically, COR activated the Nrf2 antioxidant signaling pathway both in vivo and in vitro, preventing HG-induced alterations in morphological and biochemical parameters. Notably, our study demonstrated that compared with controls, Nrf2 knockout mice and siNrf2-treated cells were more vulnerable to ferroptosis under HG conditions, and the protective effect of COR on DR was substantially diminished in these models. CONCLUSION AND IMPLICATIONS: These data indicate that COR has a protective effect against HG-induced retinal injury via a mechanism associated with the Nrf2-dependent antioxidant pathway and ferroptosis regulation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Ferroptosis , Glucosides , Hydrolyzable Tannins , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Hydrolyzable Tannins/pharmacology , Ferroptosis/drug effects , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Signal Transduction/drug effects , Glucosides/pharmacology , Humans , Mice , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Cell Line , Oxidative Stress/drug effects , Mice, Knockout , Glucose/metabolism , Glucose/toxicity , Antioxidants/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
12.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273485

ABSTRACT

Gastrodia elata Blume is a traditional medicinal and food homology substance that has been used for thousands of years, is mainly distributed in China and other Asian countries, and has always been distinguished as a superior class of herbs. Gastrodin is the main active ingredient of G. elata Blume and has attracted increasing attention because of its extensive pharmacological activities. In addition to extraction and isolation from the original plant, gastrodin can also be obtained via chemical synthesis and biosynthesis. Gastrodin has significant pharmacological effects on the central nervous system, such as sedation and improvement of sleep. It can also improve epilepsy, neurodegenerative diseases, emotional disorders and cognitive impairment to a certain extent. Gastrodin is rapidly absorbed and widely distributed in the body and can also penetrate the blood-brain barrier. In brief, gastrodin is a promising natural small molecule with significant potential in the treatment of brain diseases. In this review, we summarised studies on the synthesis, pharmacological effects and pharmacokinetic characteristics of gastrodin, with emphasis on its effects on central nervous system disorders and the possible mechanisms, in order to find potential therapeutic applications and provide favourable information for the research and development of gastodin.


Subject(s)
Benzyl Alcohols , Central Nervous System Diseases , Glucosides , Benzyl Alcohols/pharmacokinetics , Benzyl Alcohols/therapeutic use , Benzyl Alcohols/pharmacology , Benzyl Alcohols/chemistry , Glucosides/pharmacokinetics , Glucosides/therapeutic use , Glucosides/chemistry , Glucosides/pharmacology , Humans , Animals , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Gastrodia/chemistry
13.
Molecules ; 29(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274831

ABSTRACT

A predictive model utilizing near-infrared spectroscopy was developed to estimate the loss on drying, total contents of crocin I and crocin II, and picrocrocin content of saffron. Initially, the LD values were determined using a moisture-ash analyzer, while HPLC was employed for measuring the total contents of crocin I, crocin II, and picrocrocin. The near-infrared spectra of 928 saffron samples were collected and preprocessed using first derivative, standard normal variable transformation, detrended correction, multivariate scattering correction, Savitzky-Golay smoothing, and mean centering methods. Leveraging the partial least squares method, regression models were constructed, with parameters optimized through a selective combination of the above six preprocessing methods. Subsequently, prediction models for loss on drying, total contents of crocin I and crocin II, and picrocrocin content were established, and the prediction accuracy of the models was verified. The correlation coefficients and root mean square error of loss on drying, total contents of crocin I and crocin II, and picrocrocin content demonstrated high accuracy, with R2 values of 0.8627, 0.8851, and 0.8592 and root mean square error values of 0.0260, 0.0682, and 0.0465. This near-infrared prediction model established in the present study offers a precise and efficient means of assessing loss on drying, total contents of crocin I and crocin II, and picrocrocin content in saffron and is useful for the development of a rapid quality evaluation system.


Subject(s)
Carotenoids , Crocus , Spectroscopy, Near-Infrared , Crocus/chemistry , Spectroscopy, Near-Infrared/methods , Carotenoids/analysis , Least-Squares Analysis , Chromatography, High Pressure Liquid/methods , Glucosides , Terpenes , Cyclohexenes
14.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3127-3141, 2024 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-39319729

ABSTRACT

Salidroside is a functional ingredient with wide applications in food and pharmaceutical fields. It is conventionally produced by extraction from plants, the application of which is limited by the scarcity of raw materials and cumbersome process. This study achieved the efficient production of salidroside by biosynthesis with tyrosol as the substrate. While utilizing glycosyltransferases for tyrosol glycosylation, we introduced sucrose synthase to construct the uridine diphosphate glucose (UDPG) recycling system. The glycosyltransferase UGT33 and sucrose synthase AtSUS were screened out by comparison, and the recombinant strain Escherichia coli BL21/pETDuet-AtSUS-UGT33 was constructed. The copy number of the gene was optimized and the optimal copy number ratio of glycosyltransferase to sucrose synthase was determined to be 3:1. The whole-cell transformation conditions (temperature, pH, inoculum amount, substrate concentration, and concentrations of metal ions) of the recombinant strain were optimized, and the highest yield of salidroside reached 8.17 g/L after fermentation under the optimal conditions in a 5 L fermenter for 24 h. This study provides a reference for the efficient production of salidroside by microorganisms.


Subject(s)
Escherichia coli , Glucosides , Glucosyltransferases , Phenols , Phenylethyl Alcohol , Uridine Diphosphate Glucose , Phenols/metabolism , Glucosides/biosynthesis , Glucosides/metabolism , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/analogs & derivatives , Escherichia coli/genetics , Escherichia coli/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Uridine Diphosphate Glucose/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosylation , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Fermentation
15.
Chem Biol Drug Des ; 104(3): e14629, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39327238

ABSTRACT

Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.


Subject(s)
Antioxidants , Glucosides , Molecular Docking Simulation , Monoterpenes , Glucosides/pharmacology , Glucosides/chemistry , Glucosides/chemical synthesis , Glucosides/metabolism , PC12 Cells , Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemical synthesis , Animals , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Hydrogen Peroxide , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis
16.
Se Pu ; 42(10): 972-978, 2024 Oct.
Article in Chinese | MEDLINE | ID: mdl-39327661

ABSTRACT

The flavonoid contents of different bamboo-leaf extracts and their relationships to antioxidant activity were investigated in this study by preparing nine samples using two commercially available bamboo-leaf extract products and seven bamboo-leaf extracts such as Phyllostachys edulis. A high performance liquid chromatography (HPLC) method was established to determine seven flavonoid components (orientin, isoorientin, vitexin, isovitexin, tricin, luteolin and luteoloside) in these samples, which were separated using a SymmetryShieldTM RP8 column (250 mm×4.6 mm, 5 µm) under gradient-elution conditions using acetonitrile as mobile phase A and 0.5% (v/v) acetic acid aqueous solution as mobile phase B. The antioxidant activities of the samples were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assays, with half inhibitory concentration (IC50) as an indicator and the butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ) antioxidants as positive controls. Pearson correlation was then used to analyze the relationship between flavonoid content and antioxidant activity. The HPLC method was found to be accurate and reliable for determining the flavonoid contents of the bamboo-leaf extracts. The seven flavonoids were well separated, and good linear relationships were exhibited (correlation coefficients (R2)≥0.9990). Furthermore, the contents of the seven flavonoids in the bamboo-leaf extracts ranged from 14.97 to 183.94 mg/g, with the highest content of 183.94 mg/g recorded for Phyllostachys edulis. The bamboo species exhibited significantly different flavonoid contents, with Phyllostachys edulis showing the highest orientin, isoorientin, and vitexin levels of 38.45, 101.30, and 9.42 mg/g, respectively. Moreover, the bamboo-leaf extracts exhibited IC50 values of 78.23-179.41 mg/L for DPPH-radical-scavenging, while values of 203.48-1250.81 mg/L were recorded for hydroxyl radicals. The Phyllostachys edulis leaf extract exhibited the strongest antioxidant activity, with the lowest IC50 values of 78.23 and 203.48 mg/L for DPPH and hydroxyl, respectively; it showed greatly significant for the further development and application of Phyllostachys edulis. Finally, the relationships between flavonoid content and the DPPH- and hydroxyl-radical-scavenging activities (based on the IC50 values) were correlated, which revealed that the orientin and isoorientin contents are closely related to the antioxidant activities of the bamboo-leaf extracts. Consequently, the orientin and isoorientin contents can be used as indicators for evaluating the antioxidant activities of bamboo-leaf extracts.


Subject(s)
Antioxidants , Flavonoids , Luteolin , Plant Extracts , Plant Leaves , Flavonoids/analysis , Antioxidants/analysis , Luteolin/analysis , Plant Extracts/chemistry , Plant Extracts/analysis , Plant Leaves/chemistry , Apigenin/analysis , Chromatography, High Pressure Liquid , Glucosides/analysis , Sasa/chemistry , Poaceae/chemistry , Bambusa/chemistry
17.
Wei Sheng Yan Jiu ; 53(5): 771-777, 2024 Sep.
Article in Chinese | MEDLINE | ID: mdl-39308109

ABSTRACT

OBJECTIVE: To probe into the protective effect of different dose of secoisolariciresinol diglucoside(SDG) on brain of offspring of mice anainst oxidative damage and inflammatory reaction induced by maternal exposure to trans fatty acids(TFA) during gestation, and observe the the changes of regulating Nrf2/Keap1 pathway in the course. METHODS: 30 healthy female mice(C57BL/6) were divided into 5 groups randomly, they are respectively control group, TFA-exposed group, and three SDG-intervention groups(low-(TFA+LSDG), medium-(TFA+MSDG) and high-(TFA+HSDG)). The pregnancy mice of control group and TFA group were treated with distilled water and 60 mg/kg·d TFA by gavage, in the same time, the mice of three SDG-intervention groups were treated with 60 mg/kg·d TFA by gavage and fed with feed included SDG(10, 20 and 30 mg/kg). The treatment to pregnancy mice continued to birth of offspring. After 21 days of lactation, the offspring were killed under anesthesia and the experiment was ended. The coefficient of brain was calculated. The levels of superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), malondialdehyde(MDA), tumor necrosis factor-α(TNF-α), interferon-γ(IFN-γ) and amyloid-ß(Aß)of brain were detected. RT-PCR and Western Blot was used to detected gene expression and protein levels of nuclear factor erythroid-2 related factor 2(Nrf2), kelch-like ECH-associated protein 1(Keap1), quinone oxidoreductase 1(NQO1) and hemeoxygenase-l(HO-1). RESULTS: Compared with control group, the brain coefficient and Aß1-40 of offspring of TFA-group had no significant changes(P>0.05), the activity of SOD and GSH-Px reduced, the content of MDA, IFN-γ, TNF-α and Aß1-42 increased, the level of mRNA and protein expression of Nrf2, NQO1 and HO-1 decreased and the level of mRNA and protein expression of Keap1 increase because of the exposion to TFA during gestation and all the differences were statistically significant(P<0.05). Compared with TFA-group, the brain coefficient, Aß1-40 and the level of NQO1 mRNA of offspring of three SDG-intervention groups had no significant changes(P>0.05), the activity of SOD(the middle and high dose SDG intervention groups) and GSH-Px(three SDG-intervention groups) increased, the content of MDA(the middle and high dose SDG intervention groups), IFN-γ(the middle and high dose SDG intervention groups), TNF-α(three SDG-intervention groups) and Aß1-42(the middle and high dose SDG intervention groups) decreased, the mRNA expression of Nrf2 and HO-1(the middle and high dose SDG intervention groups) was up-regulated, the mRNA expression of Keap1(the middle and high dose SDG intervention group) decreased, proteic expression of Nrf2, NQO1 and HO-1 of three SDG-intervention groups increase and the level of protein of Keap1 decreased because of the intervention of SDG during gestation(P<0.05). CONCLUSION: These result suggest that maternal TFA exposure during gestation can result in oxidative stress and inflammation to brain of offspring in a way. SDG can protect brain of mice of offspring from TFA-induced oxidative injury by up-regulating the expression of mRNA and protein of Nrf2, down-regulating the expression of Keap1, accelerating expression of protein of NQO1 and HO-1 which are antioxidant protein lying downstream of pathway of Nrf2/Keap1.


Subject(s)
Brain , Butylene Glycols , Glucosides , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Trans Fatty Acids , Animals , Female , Mice , Glucosides/pharmacology , Pregnancy , NF-E2-Related Factor 2/metabolism , Brain/metabolism , Brain/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Oxidative Stress/drug effects , Butylene Glycols/pharmacology , Trans Fatty Acids/adverse effects , Prenatal Exposure Delayed Effects/metabolism , Inflammation/metabolism , Inflammation/chemically induced , Maternal Exposure/adverse effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Malondialdehyde/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
18.
Biol Pharm Bull ; 47(9): 1550-1556, 2024.
Article in English | MEDLINE | ID: mdl-39313391

ABSTRACT

Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.


Subject(s)
Acute Kidney Injury , Apoptosis , Glucosides , Mitochondria , Oxidative Stress , Phenols , Sepsis , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Apoptosis/drug effects , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Male , Mice , Mice, Inbred C57BL , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Protective Agents/pharmacology , Protective Agents/therapeutic use , Disease Models, Animal
19.
Probl Endokrinol (Mosk) ; 70(4): 44-56, 2024 Sep 15.
Article in Russian | MEDLINE | ID: mdl-39302864

ABSTRACT

BACKGROUND: Chronic brain dyscirculation is one of the frequent type 2 diabetes mellitus (DM) complications and leads to patients' disability. Sodium-glucose co-transporter type 2 inhibitors (SGLT-2i) have been proven to have advantages for cardiovascular system, but their effect on the central nervous system (CNS) has not been studied enough. AIM: To study empagliflozin effect on CNS damage functional and laboratory parameters in patients with type 2 DM and, under experimental conditions, to investigate the mechanisms of the drug neurotropic effect. MATERIALS AND METHODS: The clinical part of the study included patients with type 2 DM on metformin monotherapy (n=39). Patients with a target glycated hemoglobin level formed the "MET" group (n=19), in patients with a non-target glycated hemoglobin level empagliflozin was co-administered for the following 6 months (the "MET+EMPA" group, n=20). Healthy volunteers comprised the control group (n=16). The cognitive status and neuron-specific enolase (NSE) and neurofilament light chains (NLC) concentration were studied. DM was modeled in rats, thereafter the rats were treated with empagliflozin for 8 weeks. Microglia activation was assessed using anti-Iba-1 antibodies and morphological changes in neurons when stained by the Nissl method. RESULTS: Both in the "MET+EMPA" and the "MET" groups cognitive deficits were observed, according to the Montreal Cognitive Assessment (MOCA) (24.0 (23.0; 27.0) and 25.0 (21.0; 27.0) points) and the Mini-Mental State Examination (MMSE) (23.75 (23.0; 27.0) and 25.0 (21.0; 27.0) points). Empagliflozin therapy led to the cognitive status normalization after 6 months (26.5 (24.0; 27.0) points according to the MOCA scale and 27.5 (24.0; 28.0) points according to the MMSE). Initially, all patients had a significant increase of NSE (3.60 (2.66; 3.76) ng/ml in the "MET" group, 3.22 (2.94; 3.54) ng/ml in the "MET+EMPA¼ group, 2.72 (2.13; 2.72) ng/ml in the «Control¼ group) and NLC (4.50 (3.31; 5.56) ng/ml in the «MET¼ group, 5, 25 (3.75; 6.25) ng/ml in the «MET+EMPA¼ group comparing with 3.50 (2.25; 3.50) ng/ml in the «Control¼ group). Empagliflozin therapy led to a significant decrease in NLC already after 3 months (3.80 (3.25; 3.87) ng/ml), without significant influence on the NSE level. In the experiment, DM was characterized by an increased number of activated microgliocytes and destructured neurons and a decreased number of neurons with a normal structure. Empagliflozin therapy was accompanied by a decrease in the number of immunopositive microgliocytes in the CA1 zone of the hippocampus and an increase in the number of structured neurons. CONCLUSION: Type 2 diabetes mellitus is characterized by functional and biochemical changes in the central nervous system even under satisfactory glycemic control. Therapy with empagliflozin has a neuroprotective effect, manifested in an improvement in cognitive status and a decrease in NLC level. Empagliflozin reduces neuronal damage and abnormal microglial activation.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Glucosides/pharmacology , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Rats , Animals , Male , Female , Middle Aged , Brain/drug effects , Brain/pathology , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL