Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37.933
1.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711406

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Antioxidants , Fungicides, Industrial , Glutathione , Rats, Wistar , Reactive Oxygen Species , Thiram , Animals , Male , Rats , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Fungicides, Industrial/toxicity , Thiram/toxicity , Antioxidants/pharmacology , Mouth/metabolism , Mouth/drug effects , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Glutathione Peroxidase/metabolism
2.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806834

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Droughts , Hydrogen Peroxide , Nitric Oxide , Nitroprusside , Solanum lycopersicum , Nitroprusside/pharmacology , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Glutathione/metabolism , Antioxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Nitrosation/drug effects , Chlorophyll/metabolism
3.
Mol Biol Rep ; 51(1): 685, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796672

BACKGROUND: In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS: This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS: When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.


DNA, Mitochondrial , Drosophila melanogaster , Mitochondria , Oxidative Stress , Animals , Oxidative Stress/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Carmine/metabolism , Carmine/adverse effects , Glutathione/metabolism , DNA Damage/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Food Coloring Agents/adverse effects , Food Coloring Agents/toxicity , Catalase/metabolism , Catalase/genetics
4.
Cir Cir ; 92(2): 165-173, 2024.
Article En | MEDLINE | ID: mdl-38782389

OBJECTIVE: The current study aimed to explore the potential protective effect of Passiflora Incarnata L., (PI) in treating IR injury after testicular torsion in rats. MATERIALS AND METHODS: This research investigated the impact of PI on IR damage in male Wistar albino rats. Animals were divided to three groups: group 1 (sham), group 2 (IR), and group 3 (IR+PI). RESULTS: The malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) levels did not significantly differ across the groups (p = 0.830, p = 0.153 and p=0.140, respectively). However, Group 3 demonstrated a superior total antioxidant status (TAS) value compared to Group 2 (p = 0.020). Concurrently, Group 3 presented a significantly diminished mean total oxidant status (TOS) relative to Group 2 (p = 0.009). Furthermore, Group 3 showed a markedly improved Johnsen score relative to Group 2 (p < 0.01). IR caused cell degeneration, apoptosis, and fibrosis in testicular tissues. PI treatment, however, mitigated these effects, preserved seminiferous tubule integrity and promoted regular spermatogenesis. Furthermore, it reduced expression of tumor necrosis factor-alpha (TNF-α), Bax, and Annexin V, signifying diminished inflammation and apoptosis, thereby supporting cell survival (p < 0.01, p < 0.01, p < 0.01, respectively). CONCLUSIONS: This study revealed that PI significantly reduces oxidative stress and testicular damage, potentially benefiting therapies for IR injuries.


OBJETIVO: Explorar el posible efecto protector de Passiflora incarnata L. (PI) en el tratamiento de la lesión por isquemia-reperfusión (IR) después de una torsión testicular en ratas. MÉTODO: Se estudió el impacto de Passiflora incarnata en el daño por IR en ratas Wistar albinas machos. Los animales se dividieron tres grupos: 1 (simulado), 2 (IR) y 3 (IR+PI). RESULTADOS: Los niveles de malondialdehyde (MDA), myeloperoxidase (MPO) y glutathione (GSH) no difirieron significativamente entre los grupos (p = 0.830, p = 0.153 y p = 0.140, respectivamente). Sin embargo, el grupo 3 tuvo un valor de estado antioxidante total (TAS) superior en comparación con el grupo 2 (p = 0.020). Al mismo tiempo, el grupo 3 presentó un estado oxidante total (TOS) medio significativamente disminuido en comparación con el grupo 2 (p = 0.009). El grupo 3 mostró una mejora notable en la puntuación de Johnsen en comparación con el grupo 2 (p < 0.01). La IR causó degeneración celular, apoptosis y fibrosis en los tejidos testiculares. El tratamiento con PI mitigó estos efectos, preservó la integridad de los túbulos seminíferos y promovió la espermatogénesis regular. Además, redujo la expresión de factor de necrosis tumoral alfa, Bax y anexina V, lo que significa una disminución de la inflamación y de la apoptosis, respaldando así la supervivencia celular (p < 0.01, p < 0.01 y p < 0.01, respectivamente). CONCLUSIONES: Este estudio reveló que PI reduce significativamente el estrés oxidativo y el daño testicular, beneficiando potencialmente las terapias para lesiones por IR.


Disease Models, Animal , Passiflora , Rats, Wistar , Reperfusion Injury , Spermatic Cord Torsion , Animals , Male , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Reperfusion Injury/prevention & control , Rats , Passiflora/chemistry , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Phytotherapy , Malondialdehyde/analysis , Malondialdehyde/metabolism , Testis/drug effects , Oxidative Stress/drug effects , Glutathione/metabolism , Peroxidase/metabolism , Peroxidase/analysis , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/metabolism , Spermatogenesis/drug effects
5.
Sci Rep ; 14(1): 10905, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740939

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Epithelial Cells , NF-E2-Related Factor 2 , Oxidative Stress , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Aldehydes/metabolism , Glutathione/metabolism , Cell Survival/drug effects , Cell Line , CRISPR-Cas Systems , Lipid Peroxidation/drug effects
6.
Neuroimage ; 293: 120632, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701994

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.


Aging , Glutathione , Humans , Female , Middle Aged , Male , Adult , Aged , Glutathione/metabolism , Aging/metabolism , Aging/physiology , Young Adult , Spatial Memory/physiology , Occipital Lobe/metabolism , Gyrus Cinguli/metabolism , Brain/metabolism
7.
Bull Exp Biol Med ; 176(5): 617-619, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730108

We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).


Apoptosis , Caspase 3 , Dexamethasone , Glutathione , HSP27 Heat-Shock Proteins , Oxidative Stress , Humans , Dexamethasone/pharmacology , Jurkat Cells , Apoptosis/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Glutathione/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Oxidative Stress/drug effects , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Hydroxyl Radical/metabolism
8.
Reprod Domest Anim ; 59(5): e14596, 2024 May.
Article En | MEDLINE | ID: mdl-38757656

Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.


Chlorogenic Acid , Embryo Culture Techniques , Embryonic Development , Mitochondria , Oxidative Stress , Parthenogenesis , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Parthenogenesis/drug effects , Mitochondria/drug effects , Embryo Culture Techniques/veterinary , Chlorogenic Acid/pharmacology , Embryonic Development/drug effects , Reactive Oxygen Species/metabolism , Blastocyst/drug effects , Swine , Membrane Potential, Mitochondrial/drug effects , Antioxidants/pharmacology , Female , Glutathione/metabolism
9.
J Nanobiotechnology ; 22(1): 253, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755600

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.


Colorectal Neoplasms , Ferroptosis , Glycolysis , Polyethylene Glycols , Reactive Oxygen Species , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Mice , Polyethylene Glycols/chemistry , Ferroptosis/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Female , Glutathione/metabolism
10.
Cancer Immunol Immunother ; 73(7): 131, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748299

PURPOSE: The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS: We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohistochemistry (mIHC). RESULTS: Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS: Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.


CD8-Positive T-Lymphocytes , Glutathione , Immunotherapy , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glutathione/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Biomarkers, Tumor/metabolism , Male , gamma-Glutamyltransferase/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
11.
Nat Commun ; 15(1): 4114, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750057

Cellular sensitivity to ferroptosis is primarily regulated by mechanisms mediating lipid hydroperoxide detoxification. We show that inositol-requiring enzyme 1 (IRE1α), an endoplasmic reticulum (ER) resident protein critical for the unfolded protein response (UPR), also determines cellular sensitivity to ferroptosis. Cancer and normal cells depleted of IRE1α gain resistance to ferroptosis, while enhanced IRE1α expression promotes sensitivity to ferroptosis. Mechanistically, IRE1α's endoribonuclease activity cleaves and down-regulates the mRNA of key glutathione biosynthesis regulators glutamate-cysteine ligase catalytic subunit (GCLC) and solute carrier family 7 member 11 (SLC7A11). This activity of IRE1α is independent of its role in regulating the UPR and is evolutionarily conserved. Genetic deficiency and pharmacological inhibition of IRE1α have similar effects in inhibiting ferroptosis and reducing renal ischemia-reperfusion injury in mice. Our findings reveal a previously unidentified role of IRE1α to regulate ferroptosis and suggests inhibition of IRE1α as a promising therapeutic strategy to mitigate ferroptosis-associated pathological conditions.


Amino Acid Transport System y+ , Endoribonucleases , Ferroptosis , Glutathione , Protein Serine-Threonine Kinases , Ferroptosis/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Glutathione/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Unfolded Protein Response , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Male , Mice, Knockout
12.
J Agric Food Chem ; 72(19): 10897-10908, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691522

Gramine (GRM), which occurs in Gramineae plants, has been developed to be a biological insecticide. Exposure to GRM was reported to induce elevations of serum ALT and AST in rats, but the mechanisms of the observed hepatotoxicity have not been elucidated. The present study aimed to identify reactive metabolites that potentially participate in the toxicity. In rat liver microsomal incubations fortified with glutathione or N-acetylcysteine, one oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetylcysteine conjugate (M3) were detected after exposure to GRM. The corresponding conjugates were detected in the bile and urine of rats after GRM administration. CYP3A was the main enzyme mediating the metabolic activation of GRM. The detected GSH and NAC conjugates suggest that GRM was metabolized to a quinone imine intermediate. Both GRM and M1 showed significant toxicity to rat primary hepatocytes.


Activation, Metabolic , Cytochrome P-450 CYP3A , Hepatocytes , Rats, Sprague-Dawley , Animals , Rats , Male , Hepatocytes/metabolism , Hepatocytes/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Microsomes, Liver/metabolism , Glutathione/metabolism , Insecticides/toxicity , Insecticides/metabolism , Alkaloids/metabolism
13.
Sci Rep ; 14(1): 10835, 2024 05 12.
Article En | MEDLINE | ID: mdl-38736022

Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.


Brain , Cytarabine , Dopamine , Etoposide , Oxidative Stress , Rats, Wistar , Animals , Etoposide/pharmacology , Oxidative Stress/drug effects , Cytarabine/pharmacology , Dopamine/metabolism , Rats , Brain/metabolism , Brain/drug effects , Male , Lipid Peroxidation/drug effects , Dietary Supplements , Glutathione/metabolism
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732088

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Maternal Age , Mesenchymal Stem Cells , Nitric Oxide , Oxidation-Reduction , Reactive Oxygen Species , Thiobarbituric Acid Reactive Substances , Umbilical Cord , Humans , Female , Pregnancy , Adult , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Thiobarbituric Acid Reactive Substances/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Glutathione/metabolism , Glutathione/blood , Cell Survival , Oxidative Stress , Plasma/metabolism
15.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735875

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Antioxidants , Autophagy , Oxidative Stress , Rats, Sprague-Dawley , Spermatic Cord Torsion , Testis , Xanthophylls , Male , Animals , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Autophagy/drug effects , Rats , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Apoptosis/drug effects , Malondialdehyde/metabolism , Random Allocation , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism , Glutathione/metabolism
16.
ACS Appl Mater Interfaces ; 16(20): 25788-25798, 2024 May 22.
Article En | MEDLINE | ID: mdl-38716694

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.


Glutathione , Liposomes , Photochemotherapy , Photosensitizing Agents , Xanthones , Liposomes/chemistry , Glutathione/metabolism , Glutathione/chemistry , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Xanthones/chemistry , Xanthones/pharmacology , Animals , Mice , Photothermal Therapy , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
17.
Nat Commun ; 15(1): 3684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693181

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Aptamers, Nucleotide , DNA, Catalytic , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Animals , Receptor, ErbB-2/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Reactive Oxygen Species/metabolism , Mice , DNA Repair , DNA Damage , Glutathione/metabolism , Glutathione/chemistry , Nucleic Acids/metabolism , Nucleic Acids/chemistry
18.
PLoS One ; 19(5): e0304290, 2024.
Article En | MEDLINE | ID: mdl-38787841

The aim of the study was to assess the impact of solarium light therapy on selected biological and biochemical parameters of peripheral blood in recreational horses. The study involved 10 horses divided into two groups of young (aged 5 to 7 years) and old (aged 14 to 19 years) individuals. All animals participated in light therapy sessions every other day. Blood was sampled three times during the study: before the treatment, after five light sessions, and after ten light sessions. Morphological parameters, the activity of antioxidant enzymes, TAS values, and the levels of glutathione (GSH), vitamin D3, vitamin C, and malondialdehyde (MDA) were measured in the whole blood. Light therapy contributed to an increase in MCV, HDW, MCVr, CHr and MPV indices, and simultaneously a decrease in the basophil counts, MCHC, RDW and CHCMr indices in both groups of horses (p ≤ 0.05). At the same time reticulocytes fell in older whereas white blood cells and monocytes counts expanded in younger individuals. The treatment also increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPx) in young but decreased the activity of mentioned enzymes in blood plasma of old horses. The total antioxidant status (TAS) of the blood plasma rose progressively, whereas GSH levels declined in all individuals. Moreover, vitamin D3 levels did not change, whereas vitamin C levels gradually decreased during the experiment. The therapy also helped to reduce levels of MDA in the blood plasma, especially of older horses (p ≤ 0.05). In turn, GPx and GR activities as well as MDA levels significantly declined, whereas GSH levels notably elevated in erythrocytes (p ≤ 0.05). Solarium light therapy appears to have a beneficial impact on the morphological parameters and antioxidant status of blood in recreational horses in the winter season. However, the observed results could in part be attributed to the natural physiological adaptation of each individual organism to the treatment.


Antioxidants , Animals , Horses/blood , Antioxidants/metabolism , Glutathione/blood , Glutathione/metabolism , Phototherapy/methods , Malondialdehyde/blood , Ascorbic Acid/blood , Male , Female , Glutathione Reductase/blood , Glutathione Reductase/metabolism , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Cholecalciferol/blood , Aging/blood
19.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791153

Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.


Erythrocytes , Garlic , Hemolysis , Oxidation-Reduction , Plant Extracts , Garlic/chemistry , Humans , Plant Extracts/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Lipid Peroxidation/drug effects , Hemoglobins/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Osmotic Fragility/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38791319

Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.


Cysteine , Glutathione Transferase , Glutathione , Hydrogen Peroxide , Oxidation-Reduction , Cysteine/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Humans , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Mutation
...