Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
Immunol Lett ; 268: 106885, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901739

ABSTRACT

Leishmaniasis is a collective term for several tropical, neglected diseases caused by protozoans of the species Leishmania, 20 of which causing disease in humans ranging from localised self-healing lesions to chronic manifestations which affect the skin or inner organs. Although millions of infections are accounted for annually, treatment options are scarce and limited to medication associated with heavy side-effects and increasing antibiotic resistance. Case studies point towards immunotherapy as effective alternative treatment relying on immunomodulatory properties of e.g., the Bacillus Calmette-Guérin vaccine. Leishmania parasites are also known to modulate the immune system, yet the underlying macromolecules and surface molecules remain widely under characterised. With this short review, we aim to provide a complete summary of the existing literature describing one of the most expressed surface molecule on Leishmania spp, lipophosphoglycan (LPG), which shows great variability between different lifecycle stages and different Leishmania spp. Complete characterisation of LPG may aid to improve treatment and aid the development of vaccination strategies, and open new avenues to exploit the immunomodulatory properties of LPG in unrelated conditions.


Subject(s)
Glycosphingolipids , Immunomodulation , Leishmania , Leishmaniasis , Leishmania/immunology , Humans , Glycosphingolipids/immunology , Glycosphingolipids/metabolism , Animals , Leishmaniasis/immunology , Leishmaniasis/parasitology
2.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502474

ABSTRACT

Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.


Subject(s)
Glycosphingolipids/immunology , Membrane Microdomains/immunology , Phagocytes/immunology , Signal Transduction/immunology , Animals , Antigen Presentation/immunology , Apoptosis/immunology , Humans , Phagocytosis/immunology
3.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200284

ABSTRACT

Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Biomarkers, Tumor/metabolism , Glycosphingolipids/antagonists & inhibitors , Glycosphingolipids/metabolism , Immunotherapy/methods , Neoplasms/drug therapy , Animals , Glycosphingolipids/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Signal Transduction
4.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070747

ABSTRACT

Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), ß1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-ß) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell-cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.


Subject(s)
Colorectal Neoplasms/genetics , Glycosphingolipids/immunology , Glycosyltransferases/genetics , Mucins/genetics , Neoplasm Proteins/genetics , Protein Processing, Post-Translational , Annexin A1/genetics , Annexin A1/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Decorin/genetics , Decorin/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Gene Expression Regulation, Neoplastic , Glycosphingolipids/metabolism , Glycosylation , Glycosyltransferases/immunology , Humans , Immunotherapy, Adoptive/methods , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 3/immunology , Integrin beta1/genetics , Integrin beta1/immunology , Microfilament Proteins/genetics , Microfilament Proteins/immunology , Mucins/immunology , Neoplasm Proteins/immunology , fas Receptor/genetics , fas Receptor/immunology
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34006637

ABSTRACT

The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here, we explored the role of LXR-regulated metabolic processes in primary human CD4+ T cells and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol), which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened proinflammatory T cell function. Finally, compared with responder T cells, regulatory T cells had a distinct pattern of LXR target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism and demonstrate its relevance in modulating T cell function.


Subject(s)
Cholesterol/genetics , Glycosphingolipids/genetics , Liver X Receptors/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Benzoates/pharmacology , Benzylamines/pharmacology , Cell Membrane , Cholesterol/immunology , Female , Glucosyltransferases/genetics , Glycosphingolipids/biosynthesis , Glycosphingolipids/immunology , Humans , Immunological Synapses/drug effects , Immunological Synapses/genetics , Ligands , Lipid Metabolism/genetics , Lipid Metabolism/immunology , Liver X Receptors/agonists , Liver X Receptors/antagonists & inhibitors , Liver X Receptors/genetics , Male , Metabolic Networks and Pathways/immunology , Middle Aged , Oxysterols/pharmacology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocytes/metabolism , Young Adult
6.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917390

ABSTRACT

Glycosphingolipids (GSLs) are composed of a mono-, di-, or oligosaccharide and a ceramide and function as constituents of cell membranes. Various molecular species of GSLs have been identified in mammalian cells due to differences in the structures of oligosaccharides. The oligosaccharide structure can vary depending on cell lineage, differentiation stage, and pathology; this property can be used as a cell identification marker. Furthermore, GSLs are involved in various aspects of the immune response, such as cytokine production, immune signaling, migration of immune cells, and antibody production. GSLs containing certain structures exhibit strong immunogenicity in immunized animals and promote the production of anti-GSL antibodies. By exploiting this property, it is possible to generate antibodies that recognize the fine oligosaccharide structure of specific GSLs or glycoproteins. In our study using artificially synthesized GSLs (artGSLs), we found that several structural features are correlated with the antibody-inducing activity of GSLs. Based on these findings, we designed artGSLs that efficiently induce the production of antibodies accompanied by class switching and developed several antibodies that recognize not only certain glycan structures of GSLs but also those of glycoproteins. This review comprehensively introduces the immune activities of GSLs and their application as pharmaceuticals.


Subject(s)
Antibodies/immunology , Antibody Formation , Cell Movement , Glycosphingolipids/pharmacology , Immunoglobulin Class Switching/drug effects , Signal Transduction , Animals , Antibody Formation/drug effects , Antibody Formation/immunology , Cell Movement/drug effects , Cell Movement/immunology , Cytokines/immunology , Glycosphingolipids/chemistry , Glycosphingolipids/immunology , Humans , Signal Transduction/immunology
7.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271119

ABSTRACT

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , CD8-Positive T-Lymphocytes/immunology , Glioma/immunology , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Immunotherapy/methods , Antigen Presentation , Aspartic Acid Endopeptidases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/mortality , Glycosphingolipids/immunology , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocyte Activation , Signal Transduction , Survival Analysis , Tumor Escape
8.
Sci Rep ; 10(1): 13074, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753699

ABSTRACT

Antibodies against several self-glycans on glycosphingolipids are frequently detected in different neurological disorders. Their pathogenic role is profusely documented, but the keys for their origin remain elusive. Additionally, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria. Using HPTLC-immunostaining we aimed to characterize IgM and IgG subclass antibody responses against glycosphingolipids carrying self glycans (GM1/GM2/GM3/GD1a/GD1b/GD3/GT1b/GQ1b) and non-self glycans (Forssman/GA1/"A" blood group/Nt7) in sera from 27 randomly selected neurological disorder patients presenting IgG reactivity towards any of these antigens. Presence of IgG2 (p = 0.0001) and IgG1 (p = 0.0078) was more frequent for IgG antibodies against non-self glycans, along with less restricted antibody response (two or more simultaneous IgG subclasses). Contrariwise, IgG subclass distribution against self glycans showed clear dominance for IgG3 presence (p = 0.0017) and more restricted IgG-subclass distributions (i.e. a single IgG subclass, p = 0.0133). Interestingly, anti-self glycan IgG antibodies with simultaneous IgM presence had higher proportion of IgG2 (p = 0.0295). IgG subclass frequencies were skewed towards IgG1 (p = 0.0266) for "anti-self glycan A" subgroup (GM2/GM1/GD1b) and to IgG3 (p = 0.0007) for "anti-self glycan B" subgroup (GM3/GD1a/GD3/GT1b/GQ1b). Variations in players and/or antigenic presentation pathways supporting isotype (M-G) and IgG-subclass pattern differences in the humoral immune response against glycosphingolipids carrying non-self versus self-glycans are discussed.


Subject(s)
Glycosphingolipids/immunology , Immunoglobulin G/blood , Nervous System Diseases/blood , Nervous System Diseases/immunology , Humans , Immunoglobulin G/immunology
10.
Glycobiology ; 30(11): 881-894, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32280958

ABSTRACT

The FORS histo-blood group system is the most recently discovered carbohydrate-based human blood group system. FORS is a rare blood group system, and most individuals have naturally occurring anti-FORS1 antibodies in plasma. Screening for anti-FORS1 antibodies is often done by hemagglutination assays using FORS1-expressing sheep erythrocytes, since FORS1-positive human erythrocytes are most often not available. Here, we have characterized the non-acid glycosphingolipids from sheep erythrocytes and isolated subfractions, with mass spectrometry, binding of antibodies and lectins, and by enzymatic hydrolysis. This demonstrated the presence of Forssman and Galili pentaosylceramides, and a Galili heptaosylceramide. Two complex glycosphingolipids recognized by human anti-FORS1 antibodies were characterized as a Forssman neolacto hybrid hexaosylceramide (GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer) and a Forssman Galili hybrid heptaosylceramide (GalNAcα3GalNAcß3Galα3Galß4GlcNAcß3Galß4Glcß1Cer). These are novel glycosphingolipid structures, and to our knowledge, the first case of an elongated Galili antigen. Thus, the anti-Forssman antibodies in human serum bind not only to the classical Forssman pentaosylceramide (GalNAcα3GalNAcß3Galα4Galß4Glcß1Cer), but also when the GalNAcα3GalNAcß3 sequence is presented on a neolacto core chain and even on a Galili carbohydrate sequence.


Subject(s)
Antibodies/chemistry , Erythrocytes/chemistry , Glycosphingolipids/analysis , Animals , Antibodies/immunology , Erythrocytes/immunology , Glycosphingolipids/immunology , Humans , Sheep
11.
Biomed Pharmacother ; 126: 110097, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32203891

ABSTRACT

AIMS: In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS: We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 µg + two boosters of 20 µg). The mice were challenged two weeks after the last immunization. KEY FINDINGS: Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE: Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.


Subject(s)
Glycosphingolipids/immunology , Leishmania infantum/immunology , Leishmaniasis/prevention & control , Leishmaniasis/parasitology , Liver Diseases, Parasitic/prevention & control , Liver Diseases, Parasitic/parasitology , Protozoan Vaccines/immunology , Recombinant Proteins/immunology , Animals , Antibodies, Protozoan , Antioxidants , Disease Models, Animal , Immunization , Leishmaniasis/pathology , Liver Diseases, Parasitic/pathology , Mice , Oxidative Stress , Parasite Load , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
12.
Sci Rep ; 9(1): 18803, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827147

ABSTRACT

We previously found that artificial glycosphingolipids (artGSLs) containing very-long-chain fatty acids behave as strong immunogens in mice and promote the production of antibodies recognizing the oligosaccharide portion of artGSLs as the epitope. Here, we report that the oligosaccharide structure of artGSLs influences these immunogenic properties. We evaluated the antibody-inducing activity of artGSLs with different oligosaccharide structures in mice and found strong IgG-inducing activity only with an artGSL containing a core-fucosylated tetraoligosaccharide (Manß1,4GlcNAcß1,4[Fucα1,6]GlcNAc). To characterize the immunogenic properties of this artGSL, we analyzed various derivatives and found that the non-reducing terminal mannose structure was critical for the antibody-inducing activity. These artGSLs also exhibited IgG-inducing activity dependent on co-administration of lipid A adjuvant, but no cytokine-inducing activity similar to α-galactosylceramide was detected. Furthermore, repetitive immunization with the artGSL promoted the production of antibodies against a core-fucosylated α-fetoprotein isoform (AFP-L3) known as a hepatocellular carcinoma-specific antigen. These results indicate that the newly designed artGSLs specifically induce adaptive immune responses and promote antibody production by B cells, which can be utilized to develop anti-glycoconjugate antibodies and cancer vaccines targeting tumor-associated carbohydrate antigens.


Subject(s)
Glycosphingolipids/immunology , Immunity, Humoral , Immunization , Adjuvants, Immunologic , Animals , Carcinoma, Hepatocellular/immunology , Lipid A/immunology , Liver Neoplasms/immunology , Mice , alpha-Fetoproteins/immunology
13.
Proc Natl Acad Sci U S A ; 116(47): 23671-23681, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31690657

ABSTRACT

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.


Subject(s)
Antigen-Presenting Cells/immunology , Dendritic Cells/immunology , Endoplasmic Reticulum Stress/immunology , Lymphocyte Activation , Natural Killer T-Cells/immunology , Animals , Antigen Presentation , Antigens, CD1d/biosynthesis , Antigens, CD1d/immunology , Autoantigens/immunology , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Coculture Techniques , Cytoskeleton/ultrastructure , Endosomes/immunology , Glycosphingolipids/immunology , Glycosphingolipids/metabolism , Humans , Interleukin-2 Receptor alpha Subunit/biosynthesis , Lipids/immunology , Lysosomes/immunology , Mice , Mice, Inbred C57BL , THP-1 Cells , Thapsigargin/pharmacology , Unfolded Protein Response/immunology , eIF-2 Kinase/deficiency , eIF-2 Kinase/physiology
14.
PLoS Negl Trop Dis ; 13(9): e0007720, 2019 09.
Article in English | MEDLINE | ID: mdl-31513599

ABSTRACT

Lipophosphoglycan (LPG) is the major surface glycoconjugate of Leishmania protozoan and has an important biological role in host-parasite interactions both in the midgut epithelium of the sand fly vector and in the vertebrate macrophages. Canine leishmaniasis (CanL) is a chronic infectious disease predominantly caused by Leishmania infantum. An early and accurate immunodiagnosis of the disease is crucial for veterinary clinical practice and for disease control. In this work, we evaluated L. infantum LPG as an antigen in an indirect enzyme-linked immunosorbent assay (ELISA) for CanL immunodiagnosis (LPG-ELISA) by testing serum samples from 97 naturally infected dogs with diverse clinical presentations ranging from subclinical infection to severe disease, as evaluated by veterinarian infectologists. Serum samples from healthy dogs from non-endemic areas (n = 68) and from dogs with other infectious diseases (n = 64) were used as controls for assay validation. The performance of the LPG-ELISA was compared with that of an ELISA using the soluble fraction of L. infantum total lysate antigen (TLA). LPG-ELISA presented a superior performance in comparison to TLA-ELISA, with 91.5% sensitivity, 98.5% specificity and 99.7% accuracy. A distinguishing feature of the LPG-ELISA compared to the TLA-ELISA was its higher ability to identify subclinical infection in clinically healthy dogs, in addition to the absence of cross-reactivity with other canine infectious diseases. Finally, LPG-ELISA was compared to TR DPP visceral canine leishmaniasis test, the immunochromatographic test recommended by the Brazilian Ministry of Agriculture. LPG-ELISA exhibited higher values of specificity (98.5% versus 93.1%) and sensitivity (91.5% versus 90.6%) compared to TR DPP. In conclusion, L. infantum-derived LPG was recognized by antibodies elicited during CanL in different infection stages and was shown to be a suitable antigen for specific clinical settings of veterinary diagnosis and for public health usage.


Subject(s)
Leishmaniasis/veterinary , Animals , Antigens, Protozoan/analysis , Dog Diseases/diagnosis , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay/methods , Glycosphingolipids/immunology , Leishmania infantum/immunology , Leishmania infantum/isolation & purification , Leishmaniasis/blood , Leishmaniasis/diagnosis , Serologic Tests/veterinary
15.
Article in English | MEDLINE | ID: mdl-31355149

ABSTRACT

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Subject(s)
Glycosphingolipids/chemistry , Glycosphingolipids/immunology , Leishmania braziliensis/genetics , Leishmania braziliensis/metabolism , Leishmaniasis, Cutaneous/immunology , Macrophage Activation , Toll-Like Receptor 4/metabolism , Animals , Cytokines/metabolism , Gene Knockout Techniques , Glycosphingolipids/isolation & purification , Host-Pathogen Interactions , Humans , Immunity, Innate , Macrophages/immunology , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide , Psychodidae/parasitology , Toll-Like Receptor 4/genetics , Virulence Factors
16.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30804103

ABSTRACT

CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.


Subject(s)
Chemokine CXCL16/immunology , Chemotaxis/immunology , Glycosphingolipids/immunology , Host-Parasite Interactions/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
17.
Front Immunol ; 10: 90, 2019.
Article in English | MEDLINE | ID: mdl-30761148

ABSTRACT

Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.


Subject(s)
Glycosphingolipids/immunology , Glycosphingolipids/metabolism , Hematopoietic Stem Cells/metabolism , Lymphocytes/metabolism , Myeloid Cells/metabolism , Animals , Antibodies/therapeutic use , Cell Membrane Structures/metabolism , Cytokines/metabolism , Glycosphingolipids/antagonists & inhibitors , Glycosphingolipids/classification , Humans , Infections/immunology , Mice , Molecular Targeted Therapy , Neoplasms/immunology , Signal Transduction
18.
FEBS Lett ; 592(23): 3921-3942, 2018 12.
Article in English | MEDLINE | ID: mdl-30320884

ABSTRACT

Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived ß-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.


Subject(s)
Fungi/immunology , Glycosphingolipids/immunology , Immune System/immunology , Membrane Microdomains/immunology , Mycobacterium/immunology , Animals , Fungi/metabolism , Fungi/physiology , Glycosphingolipids/metabolism , Humans , Immune System/metabolism , Immune System/microbiology , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/microbiology , Mycobacterium/metabolism , Mycobacterium/physiology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , beta-Glucans/immunology , beta-Glucans/metabolism
19.
Biochem Biophys Res Commun ; 497(4): 983-989, 2018 03 18.
Article in English | MEDLINE | ID: mdl-29458022

ABSTRACT

Here we report a new method for the efficient generation of antibodies that recognize the fine structures of oligosaccharides on glycoproteins. We found a newly designed artificial glycosphingolipid carrying a very long chain fatty acid to be a strong immunogen in mice, with the serum of immunized mice containing antibodies recognizing the oligosaccharide structure of the immunogen. First, we found that conjugation of a simple ceramide analogue to target oligosaccharides could enhance the immunogenicity of these oligosaccharides in these immunized mice. This effect was confirmed in mice immunized with the artificial glycosphingolipids carrying 6'-Sialyl-LacNAc, 3'-Sialyl-LacNAc and LacNAc. Next, we tried to improve the immunogenic enhancing effect of the ceramide analogue. In a model experiment using 6'-Sialyl-LacNAc oligosaccharide, we manipulated the alkyl chains to several lengths, and found that a longer alkyl chain length of the fatty acid correlated with high immunogenicity. Among these we examined, artificial glycosphingolipids conjugated with a ceramide analogue carrying a very long chain fatty acid (lignoceric acid) showed the strongest immunogenicity. By using the artificial glycosphingolipid containing 6'-Sialy-LacNAc and lignoceric acid, we succeeded in the generation of a new anti-6'-Sialyl-LacNAc antibody that recognizes 6'-Sialyl-LacNAc carrying glycoproteins but does not bind to 6'-Sialyllactose, asialo-glycoporoteins and glycoproteins carrying 3'-Sialyl-LacNAc. These results indicate that the established technology is valuable for the targeted generation of monoclonal antibodies against glycoproteins containing specific oligosaccharide structures.


Subject(s)
Antibodies, Monoclonal/immunology , Oligosaccharides/immunology , Animals , Glycoproteins/chemistry , Glycoproteins/immunology , Glycosphingolipids/chemical synthesis , Glycosphingolipids/chemistry , Glycosphingolipids/immunology , Immunization , Methods , Mice , Sensitivity and Specificity
20.
Sci Rep ; 7(1): 14321, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084985

ABSTRACT

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Subject(s)
Glycosphingolipids/immunology , Leishmania infantum/physiology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , PPAR gamma/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Animals , Cells, Cultured , Dinoprostone/metabolism , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , PPAR gamma/genetics , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL