Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.112
Filter
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38953896

ABSTRACT

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Subject(s)
Endothelial Cells , Membrane Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/immunology , Signal Transduction , Vascular Diseases/genetics , Vascular Diseases/pathology , Golgi Apparatus/metabolism , Interferons/metabolism , Interferons/genetics , Male , Gain of Function Mutation , Mutation , Infant
2.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920633

ABSTRACT

The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade.


Subject(s)
B7-H1 Antigen , Cilia , Hedgehog Proteins , Signal Transduction , Cilia/metabolism , B7-H1 Antigen/metabolism , Hedgehog Proteins/metabolism , Humans , Animals , Mice , Centrosome/metabolism , Golgi Apparatus/metabolism
3.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Article in English | MEDLINE | ID: mdl-38904019

ABSTRACT

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Animals , Humans , Mice , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928424

ABSTRACT

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.


Subject(s)
Endosomes , Lysosomes , Humans , Amino Acid Sequence , Cell Membrane/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Lysosomes/metabolism , Nucleotide Transport Proteins/metabolism , Nucleotide Transport Proteins/genetics , Protein Sorting Signals , Protein Transport
5.
Cell Death Dis ; 15(6): 417, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879509

ABSTRACT

Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Golgi Apparatus , Neoplastic Stem Cells , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Humans , Golgi Apparatus/metabolism , Golgi Apparatus/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , DNA Damage , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Anal Chem ; 96(23): 9737-9743, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825763

ABSTRACT

Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.


Subject(s)
Alkaline Phosphatase , Fluorescent Dyes , Golgi Apparatus , Golgi Apparatus/metabolism , Alkaline Phosphatase/metabolism , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Mice , Cisplatin/pharmacology
7.
Elife ; 122024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837189

ABSTRACT

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Membrane Microdomains , Protein Transport , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Membrane Microdomains/metabolism , Secretory Pathway , Humans , Kinetics , Cell Membrane/metabolism , Membrane Proteins/metabolism , HeLa Cells
8.
Sci Adv ; 10(25): eadm9216, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905340

ABSTRACT

Ufmylation is implicated in multiple cellular processes, but little is known about its functions and regulation in protein trafficking. Here, we demonstrate that the genetic depletion of core components of the ufmylation cascade, including ubiquitin-fold modifier 1 (UFM1), UFM1 activation enzyme 5, UFM1-specific ligase 1 (UFL1), UFM1-specific protease 2, and UFM1-binding protein 1 (UFBP1) each markedly inhibits the endoplasmic reticulum (ER)-Golgi transport, surface delivery, and recruitment to COPII vesicles of a subset of G protein-coupled receptors (GPCRs) and UFBP1's function partially relies on UFM1 conjugation. We also show that UFBP1 and UFL1 interact with GPCRs and UFBP1 localizes at COPII vesicles coated with specific Sec24 isoforms. Furthermore, the UFBP1/UFL1-binding domain identified in the receptors effectively converts non-GPCR protein transport into the ufmylation-dependent pathway. Collectively, these data reveal important functions for the ufmylation system in GPCR recruitment to COPII vesicles, biosynthetic transport, and sorting at ER via UFBP1 ufmylation and interaction directly.


Subject(s)
COP-Coated Vesicles , Endoplasmic Reticulum , Protein Transport , Receptors, G-Protein-Coupled , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Golgi Apparatus/metabolism , Protein Binding , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , HEK293 Cells , HeLa Cells , Proteins
9.
Biochem Biophys Res Commun ; 724: 150174, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38852507

ABSTRACT

The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.


Subject(s)
Cilia , Osteogenesis , rab GTP-Binding Proteins , Cilia/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Animals , Mice , Humans , Skull/metabolism , Hedgehog Proteins/metabolism , Cell Differentiation , Collagen Type I/metabolism , Collagen Type I/genetics , Signal Transduction , Bone Development , Facial Bones/metabolism , Facial Bones/growth & development , Facial Bones/embryology , Cell Proliferation , Protein Transport , Golgi Apparatus/metabolism
10.
Biol Pharm Bull ; 47(6): 1136-1143, 2024.
Article in English | MEDLINE | ID: mdl-38866522

ABSTRACT

Ceramide (Cer) is synthesized de novo in the bilayer of the endoplasmic reticulum and transported to the cytosolic leaflet of the trans-Golgi apparatus for sphingomyelin (SM) synthesis. As the active site of SM synthase (SMS) is located on the luminal side of the Golgi membrane, Cer translocates to the lumen via transbilayer movement for SM synthesis. However, the mechanism of transbilayer movement is not fully understood. As the Cer-related translocases seem to localize near the SMS, the protein was identified using proximity-dependent biotin identification proteomics. Phospholipid scramblase 1 (PLSCR1), which is thought to act as a scramblase for phosphatidylserine and phosphatidylethanolamine, was identified as a protein proximal to the SMS isoforms SMS1 and SMS2. Although five isoforms of PLSCR have been reported in humans, only PLSCR1, PLSCR3, and PLSCR4 are expressed in HEK293T cells. Confocal microscopic analysis showed that PLSCR1 and PLSCR4 partially co-localized with p230, a trans-Golgi network marker, where SMS isoforms are localized. We established CRISPR/Cas9-mediated PLSCR1, PLSCR3, and PLSCR4 single-knockout cells and PLSCR1, 3, 4 triple knockout HEK293T cells. Liquid chromatography-tandem mass spectrometry revealed that the levels of species with distinct acyl chains in Cer and SM were not significantly different in single knockout cells or in the triple knockout cells compared to the wild-type cells. Our findings suggest that PLSCR1 is localized in the vicinity of SMS isoforms, however is not involved in the transbilayer movement of Cer for SM synthesis.


Subject(s)
Phospholipid Transfer Proteins , Sphingomyelins , Transferases (Other Substituted Phosphate Groups) , Humans , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , HEK293 Cells , Sphingomyelins/metabolism , Sphingomyelins/biosynthesis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Golgi Apparatus/metabolism , Golgi Apparatus/enzymology
11.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38913027

ABSTRACT

Numerous biomedically important cargoes depend on adaptor protein complex-1 (AP-1) for their localization. However, controversy surrounds whether AP-1 mediates traffic from or to the Golgi. Robinson et al. (https://www.doi.org/10.1083/jcb.202310071) present compelling evidence that AP-1 mediates recycling to the Golgi.


Subject(s)
Adaptor Protein Complex 1 , Golgi Apparatus , Protein Transport , Golgi Apparatus/metabolism , Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex 1/genetics , Humans , Kinetics , Animals
12.
PLoS One ; 19(6): e0304001, 2024.
Article in English | MEDLINE | ID: mdl-38885274

ABSTRACT

The plant BEACH-domain protein SPIRRIG (SPI) is involved in regulating cell morphogenesis and salt stress responses in Arabidopsis thaliana, Arabis alpina, and Marchantia polymorpha and was reported to function in the context of two unrelated cellular processes: vesicular trafficking and P-body mediated RNA metabolism. To further explore the molecular function of SPI, we isolated a second-site mutant, specifically rescuing the spi mutant trichome phenotype. The molecular analysis of the corresponding gene revealed a dominant negative mutation in RABE1C, a ras-related small GTP-binding protein that localizes to Golgi. Taken together, our data identified the genetic interaction between RABE1C and SPI, which is beneficial for further dissecting the function of SPI in vesicle trafficking-associated cell morphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mutation , Phenotype , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Golgi Apparatus/metabolism , Golgi Apparatus/genetics , Trichomes/genetics
13.
J Biol Chem ; 300(6): 107378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762179

ABSTRACT

The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.


Subject(s)
Cation Transport Proteins , Golgi Apparatus , Zinc , Humans , Glycosylation , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Animals , Zinc/metabolism , Mice , Golgi Apparatus/metabolism , Mannosidases/metabolism , Mannosidases/genetics , Polysaccharides/metabolism , Cell Line, Tumor , Mice, Nude , Zinc Transporter 8
14.
J Control Release ; 371: 338-350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789089

ABSTRACT

Nutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis. Thus, in this study, we present a "Golgi-customized Trojan horse" based on tellurium loaded with apigenin (4',5,7-trihydroxyflavone) and human serum albumin, which was able to induce GLUT1 plasma membrane localization disturbance via Golgi dispersal leading to the inhibition of tumor glycolysis. Diamond-shaped delivery system can efficiently penetrate into cells as a gift like Trojan horse, which decomposes into tellurite induced by intrinsically high H2O2 and GSH levels. Consequently, tellurite acts as released warriors causing up to 3.8-fold increase in Golgi apparatus area due to the down-regulation of GOLPH3. Further, this affects GLUT1 membrane localization and glucose transport disturbance. Simultaneously, apigenin hinders ongoing glycolysis and causes significant decrease in ATP level. Collectively, our "Golgi-customized Trojan horse" demonstrates a potent antitumor activity because of its capability to deprive energy resources of cancer cells. This study not only expands the applications of tellurium-based nanomaterials in the biomedicine but also provides insights into glycolysis restriction for anticancer therapy.


Subject(s)
Apigenin , Cell Membrane , Glucose Transporter Type 1 , Glycolysis , Golgi Apparatus , Tellurium , Humans , Glycolysis/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Glucose Transporter Type 1/metabolism , Apigenin/administration & dosage , Apigenin/pharmacology , Tellurium/administration & dosage , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Glucose/metabolism
15.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
16.
Circ Res ; 135(2): e24-e38, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38813686

ABSTRACT

BACKGROUND: Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to ß-adrenergic receptor (ß-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. ß1-AR (ß1-adrenergic receptor) and ß2-ARs (ß2-adrenergic receptor) are the 2 major subtypes of ß-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of ß1-ARs drives detrimental cardiac remodeling while ß2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through ß2-ARs remain unclear. METHODS: ß2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of ß2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS: Here, we show that ß2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for ß2-AR-mediated phospholipase C inhibition requires internalization of ß2-AR, activation of Gi and Gßγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-ß1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS: This reveals a mechanism for ß2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of ß2-AR signaling on the development of heart failure.


Subject(s)
Myocytes, Cardiac , Receptors, Adrenergic, beta-2 , Signal Transduction , Animals , Receptors, Adrenergic, beta-2/metabolism , Myocytes, Cardiac/metabolism , Mice , Cells, Cultured , Rats , Cardiomegaly/metabolism , Cardiomegaly/pathology , Mice, Inbred C57BL , Golgi Apparatus/metabolism , Phosphoinositide Phospholipase C/metabolism , Rats, Sprague-Dawley , Male , Protein Kinase C/metabolism , Animals, Newborn , Endocytosis , Mice, Knockout
17.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38782601

ABSTRACT

Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction. Three-dimensional modelling shows that this conserved motif binds the stomatin/prohibitin/flotillin/HflKC domain of two adjacent ERLIN subunits at different interfaces. Protein variants that preclude these interactions have been previously linked to hereditary spastic paraplegia. Using omics-based approaches in combination with phenotypic characterization of HeLa cells lacking both ERLINs, we demonstrate a role of ERLIN scaffolds in limiting cholesterol esterification, thereby favouring cholesterol transport from the ER to the Golgi apparatus and regulating Golgi morphology and the secretory pathway.


Subject(s)
Cholesterol , Endoplasmic Reticulum , Golgi Apparatus , Membrane Proteins , Secretory Pathway , Ubiquitin-Protein Ligases , Humans , Membrane Proteins/metabolism , Cholesterol/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Endoplasmic Reticulum/metabolism , HeLa Cells , Golgi Apparatus/metabolism , Protein Binding , Nerve Tissue Proteins
18.
Nat Commun ; 15(1): 4469, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796472

ABSTRACT

To facilitate inter-tissue communication and the exchange of proteins, lipoproteins, and metabolites with the circulation, hepatocytes have an intricate and efficient intracellular trafficking system regulated by small Rab GTPases. Here, we show that Rab30 is induced in the mouse liver by fasting, which is amplified in liver-specific carnitine palmitoyltransferase 2 knockout mice (Cpt2L-/-) lacking the ability to oxidize fatty acids, in a Pparα-dependent manner. Live-cell super-resolution imaging and in vivo proximity labeling demonstrates that Rab30-marked vesicles are highly dynamic and interact with proteins throughout the secretory pathway. Rab30 whole-body, liver-specific, and Rab30; Cpt2 liver-specific double knockout (DKO) mice are viable with intact Golgi ultrastructure, although Rab30 deficiency in DKO mice suppresses the serum dyslipidemia observed in Cpt2L-/- mice. Corresponding with decreased serum triglyceride and cholesterol levels, DKO mice exhibit decreased circulating but not hepatic ApoA4 protein, indicative of a trafficking defect. Together, these data suggest a role for Rab30 in the selective sorting of lipoproteins to influence hepatocyte and circulating triglyceride levels, particularly during times of excessive lipid burden.


Subject(s)
Carnitine O-Palmitoyltransferase , Fasting , Hepatocytes , Homeostasis , Lipid Metabolism , Liver , Mice, Knockout , rab GTP-Binding Proteins , Animals , Male , Mice , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cholesterol/metabolism , Fasting/metabolism , Golgi Apparatus/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice, Inbred C57BL , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Triglycerides/metabolism , Triglycerides/blood
19.
Biotechnol J ; 19(5): e2400098, 2024 May.
Article in English | MEDLINE | ID: mdl-38797728

ABSTRACT

Human carboxypeptidase B1 (hCPB1) is vital for recombinant insulin production, holding substantial value in the pharmaceutical industry. Current challenges include limited hCPB1 enzyme activity. In this study, recombinant hCPB1 efficient expression in Pichia pastoris was achieved. To enhance hCPB1 secretion, we conducted signal peptides screening and deleted the Vps10 sortilin domain, reducing vacuolar mis-sorting. Overexpression of Sec4p increased the fusion of secretory vesicles with the plasma membrane and improved hCPB1 secretion by 20%. Rational protein engineering generated twenty-two single-mutation mutants and identified the A178L mutation resulted in a 30% increase in hCPB1 specific activity. However, all combinational mutations that increased specific activities decreased protein expression levels. Therefore, computer-aided global protein design with PROSS was employed for the aim of improving specific activities and preserving good protein expression. Among the six designed mutants, hCPB1-P6 showed a remarkable 114% increase in the catalytic rate constant (kcat), a 137% decrease in the Michaelis constant (Km), and a 490% increase in catalytic efficiency. Most mutations occurred on the surface of hCPB1-P6, with eight sites mutated to proline. In a 5 L fermenter, hCPB1-P6 was produced by the secretion-enhanced P. pastoris chassis to 199.6 ± 20 mg L-1 with a specific activity of 96 ± 0.32 U mg-1, resulting in a total enzyme activity of 19137 ± 1131 U L-1, demonstrating significant potential for industrial applications.


Subject(s)
Carboxypeptidase B , Cell Membrane , Golgi Apparatus , Protein Engineering , Recombinant Proteins , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Engineering/methods , Carboxypeptidase B/genetics , Carboxypeptidase B/metabolism , Cell Membrane/metabolism , Cell Membrane/genetics , Golgi Apparatus/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/enzymology , Saccharomycetales/genetics , Saccharomycetales/enzymology , Mutation , Pichia/genetics , Pichia/metabolism , Protein Sorting Signals/genetics , Protein Transport
20.
Curr Opin Cell Biol ; 88: 102365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705050

ABSTRACT

Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.


Subject(s)
Golgi Apparatus , Golgi Apparatus/metabolism , Humans , Animals , Protein Transport , Biological Transport , Transport Vesicles/metabolism , Membrane Fusion
SELECTION OF CITATIONS
SEARCH DETAIL
...