Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.313
Filter
1.
J Agric Food Chem ; 72(38): 20905-20917, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39258562

ABSTRACT

The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.


Subject(s)
Aphids , Chitin , Insecticides , Nanostructures , RNA, Double-Stranded , Animals , Aphids/drug effects , Chitin/chemistry , Chitin/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Nanostructures/chemistry , Gossypium/chemistry , Gossypium/parasitology , Gossypium/metabolism , Gossypium/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Control/methods , Plant Diseases/parasitology , Plant Diseases/prevention & control , Limonins
2.
BMC Plant Biol ; 24(1): 842, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242989

ABSTRACT

BACKGROUND: Calcium-dependent protein kinase (CDPK) plays a key role in cotton tolerance to abiotic stress. However, its role in cotton heat stress tolerance is not well understood. Here, we characterize the GhCDPK gene family and their expression profiles with the aim of identifying CDPK genes associated with heat stress tolerance. RESULTS: This study revealed 48 GhCDPK members in the cotton genome, distributed on 18 chromosomes. Tree phylogenetic analysis showed three main clustering groups of the GhCDPKs. Cis-elements revealed many abiotic stress and phytohormone pathways conserved promoter regions. Similarly, analysis of the transcription factor binding sites (TFBDS) in the GhCDPK genes showed many stress and hormone related sites. The expression analysis based on qRT-PCR showed that GhCDPK16 was highly responsive to high-temperature stress. Subsequent protein-protein interactions of GhCDPK16 revealed predictable interaction with ROS generating, calcium binding, and ABA signaling proteins. Overexpression of GhCDPK16 in cotton and Arabidopsis improved thermotolerance by lowering ROS compound buildup. Under heat stress, GhCDPK16 transgenic lines upregulated heat-inducible genes GhHSP70, GHSP17.3, and GhGR1, as demonstrated by qRT-PCR analysis. Contrarily, GhCDPK16 knockout lines in cotton exhibited an increase in ROS accumulation. Furthermore, antioxidant enzyme activity was dramatically boosted in the GhCDPK16-ox transgenic lines. CONCLUSIONS: The collective findings demonstrated that GhCDPK16 could be a viable gene to enhance thermotolerance in cotton and, therefore, a potential candidate gene for improving heat tolerance in cotton.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Heat-Shock Response , Plant Proteins , Arabidopsis/genetics , Arabidopsis/physiology , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Heat-Shock Response/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Thermotolerance/genetics
3.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273506

ABSTRACT

Cotton fiber is the leading natural textile material, and fiber elongation plays an essential role in the formation of cotton yield and quality. Although a number of components in the molecular network controlling cotton fiber elongation have been reported, a lot of players still need to be functionally dissected to understand the regulatory mechanism of fiber elongation comprehensively. In the present study, an R2R3-MYB transcription factor gene, GhMYB201, was characterized and functionally verified via CRISPR/Cas9-mediated gene editing. GhMYB201 was homologous to Arabidopsis AtMYB60, and both coding genes (GhMYB201At and GhMYB201Dt) were preferentially expressed in elongating cotton fibers. Knocking-out of GhMYB201 significantly reduced the rate and duration of fiber elongation, resulting in shorter and coarser mature fibers. It was found that GhMYB201 could bind and activate the transcription of cell wall loosening genes (GhRDLs) and also ß-ketoacyl-CoA synthase genes (GhKCSs) to enhance very-long-chain fatty acid (VLCFA) levels in elongating fibers. Taken together, our data demonstrated that the transcription factor GhMYB201s plays an essential role in promoting fiber elongation via activating genes related to cell wall loosening and VLCFA biosynthesis.


Subject(s)
Cell Wall , Cotton Fiber , Fatty Acids , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Transcription Factors , Cell Wall/metabolism , Cell Wall/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fatty Acids/metabolism , Fatty Acids/biosynthesis
4.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273586

ABSTRACT

A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Cotton Fiber , Gossypium , Phenotype , Quantitative Trait Loci , Seeds , Gossypium/genetics , Seeds/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Plant Breeding/methods , Genotype
5.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273624

ABSTRACT

Terpene synthases (TPSs), key gatekeepers in the biosynthesis of herbivore-induced terpenes, are pivotal in the diversity of terpene chemotypes across and within plant species. Here, we constructed a gene-based pangenome of the Gossypium genus by integrating the genomes of 17 diploid and 10 tetraploid species. Within this pangenome, 208 TPS syntelog groups (SGs) were identified, comprising 2 core SGs (TPS5 and TPS42) present in all 27 analyzed genomes, 6 softcore SGs (TPS11, TPS12, TPS13, TPS35, TPS37, and TPS47) found in 25 to 26 genomes, 131 dispensable SGs identified in 2 to 24 genomes, and 69 private SGs exclusive to a single genome. The mutational load analysis of these identified TPS genes across 216 cotton accessions revealed a great number of splicing variants and complex splicing patterns. The nonsynonymous/synonymous Ka/Ks value for all 52 analyzed TPS SGs was less than one, indicating that these genes were subject to purifying selection. Of 208 TPS SGs encompassing 1795 genes, 362 genes derived from 102 SGs were identified as atypical and truncated. The structural analysis of TPS genes revealed that gene truncation is a major mechanism contributing to the formation of atypical genes. An integrated analysis of three RNA-seq datasets from cotton plants subjected to herbivore infestation highlighted nine upregulated TPSs, which included six previously characterized TPSs in G. hirsutum (AD1_TPS10, AD1_TPS12, AD1_TPS40, AD1_TPS42, AD1_TPS89, and AD1_TPS104), two private TPSs (AD1_TPS100 and AD2_TPS125), and one atypical TPS (AD2_TPS41). Also, a TPS-associated coexpression module of eight genes involved in the terpenoid biosynthesis pathway was identified in the transcriptomic data of herbivore-infested G. hirsutum. These findings will help us understand the contributions of TPS family members to interspecific terpene chemotypes within Gossypium and offer valuable resources for breeding insect-resistant cotton cultivars.


Subject(s)
Alkyl and Aryl Transferases , Genome, Plant , Gossypium , Multigene Family , Phylogeny , Gossypium/genetics , Gossypium/enzymology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Terpenes/metabolism , Gene Expression Regulation, Plant
6.
Theor Appl Genet ; 137(9): 214, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223330

ABSTRACT

KEY MESSAGE: A GWAS in an elite diversity panel, evaluated across 10 environments, identified genomic regions regulating six fiber quality traits, facilitating genomics-assisted breeding and gene discovery in upland cotton. In this study, an elite diversity panel of 348 upland cotton accessions was evaluated in 10 environments across the US Cotton Belt and genotyped with the cottonSNP63K array, for a genome-wide association study of six fiber quality traits. All fiber quality traits, upper half mean length (UHML: mm), fiber strength (FS: g tex-1), fiber uniformity (FU: %), fiber elongation (FE: %), micronaire (MIC) and short fiber content (SFC: %), showed high broad-sense heritability (> 60%). All traits except FE showed high genomic heritability. UHML, FS and FU were all positively correlated with each other and negatively correlated with FE, MIC and SFC. GWAS of these six traits identified 380 significant marker-trait associations (MTAs) including 143 MTAs on 30 genomic regions. These 30 genomic regions included MTAs identified in at least three environments, and 23 of them were novel associations. Phenotypic variation explained for the MTAs in these 30 genomic regions ranged from 6.68 to 11.42%. Most of the fiber quality-associated genomic regions were mapped in the D-subgenome. Further, this study confirmed the pleiotropic region on chromosome D11 (UHML, FS and FU) and identified novel co-localized regions on D04 (FU, SFC), D05 (UHML, FU, and D06 UHML, FU). Marker haplotype analysis identified superior combinations of fiber quality-associated genomic regions with high trait values (UHML = 32.34 mm; FS = 32.73 g tex-1; FE = 6.75%). Genomic analyses of traits, haplotype combinations and candidate gene information described in the current study could help leverage genetic diversity for targeted genetic improvement and gene discovery for fiber quality traits in cotton.


Subject(s)
Cotton Fiber , Genotype , Gossypium , Phenotype , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Cotton Fiber/analysis , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Association Studies , Linkage Disequilibrium , Chromosome Mapping/methods , Genome, Plant , Plant Breeding
7.
BMC Biol ; 22(1): 197, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256779

ABSTRACT

BACKGROUND: Cotton is an important economic crop and a host of Liriomyza sativae. Pectin methylesterase (PME)-mediated pectin metabolism plays an indispensable role in multiple biological processes in planta. However, the pleiotropic functions of PME often lead to unpredictable effects on crop resistance to pests. Additionally, whether and how PME affects susceptibility to Liriomyza sativae remain unclear. RESULTS: Here, we isolated GhPME36, which is located in the cell wall, from upland cotton (Gossypium hirsutum L.). Interestingly, the overexpression of GhPME36 in cotton caused severe susceptibility to Liriomyza sativae but increased leaf biomass in Arabidopsis. Cytological observations revealed that the cell wall was thinner with more demethylesterified pectins in GhPME36-OE cotton leaves than in WT leaves, whereas the soluble sugar content of GhPME36-OE cotton leaf cell walls was accordingly higher; both factors attracted Liriomyza sativae to feed on GhPME36-OE cotton leaves. Metabolomic analysis demonstrated that glucose was significantly differentially accumulated. Transcriptomic analysis further revealed DEGs enriched in glucose metabolic pathways when GhPME36 was overexpressed, suggesting that GhPME36 aggravates susceptibility to Liriomyza sativae by affecting both the structure and components of cell wall biosynthesis. Moreover, GhPME36 interacts with another pectin-modifying enzyme, GhC/VIF1, to maintain the dynamic stability of pectin methyl esterification. CONCLUSIONS: Taken together, our results reveal the cytological and molecular mechanisms by which GhPME36 aggravates susceptibility to Liriomyza sativae. This study broadens the knowledge of PME function and provides new insights into plant resistance to pests and the safety of genetically modified plants.


Subject(s)
Cell Wall , Gossypium , Plant Leaves , Plant Proteins , Gossypium/genetics , Cell Wall/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Animals , Ascomycota/physiology , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Plant Diseases/parasitology , Gene Expression Regulation, Plant , Arabidopsis/genetics , Plants, Genetically Modified/genetics
8.
BMC Plant Biol ; 24(1): 870, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289615

ABSTRACT

BACKGROUND: Secretory carrier membrane proteins (SCAMPs) form a family of integral membrane proteins and play a crucial role in mediating exocytosis in both animals and plants. While SCAMP genes have been studied in several plant species, their functions in cotton, particularly in response to abiotic stress, have not yet been reported. RESULTS: In this study, a total of 53 SCAMP genes were identified in G. arboreum, G. raimondii, G. hirsutum, and G. barbadense. These genes were classified into five groups based on a phylogenetic analysis with SCAMPs from Arabidopsis thaliana. The main factor driving the expansion of the SCAMP gene family in G. hirsutum is tandem and segmental duplication events. Using MEME, in addition to the conserved SCAMP domain, we identified 3-13 other domains in each GhSCAMP. The cis-element analysis suggested that GhSCAMPs were widely involved in cotton growth and development, and responses to abiotic stresses. RNA sequencing (RNA-Seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results showed that most GhSCAMPs were expressed highly in many tissues and had differential expression responses to drought, cold, and heat stresses. Knock-down of GhSCAMP2 and GhSCAMP4 by virus-induced gene silencing (VIGS) lead to a salt-sensitive phenotype and had a lower content of CAT, POD, and SOD. CONCLUSIONS: This study identified SCAMP genes in four cotton species, enhancing our understanding of the potential biological functions of SCAMPs. Additionally, we demonstrated that GhSCAMP2 and GhSCAMP4 positively regulate cotton tolerance to salt stress.


Subject(s)
Gossypium , Phylogeny , Plant Proteins , Salt Tolerance , Gossypium/genetics , Gossypium/physiology , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Stress, Physiological/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Genome, Plant
9.
Sci Data ; 11(1): 1003, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39294155

ABSTRACT

Cotton thrip, Thrips tabaci is a major polyphagous pest widely distributed on a variety of crops around the world, causing huge economic losses to agricultural production. Due to its biological and genomic characteristics, this pest can reproduce quickly and develop resistance to various pesticides in a very short time. However, the lack of high-quality reference genomes has hindered deeper gene function exploration and slows down the development of new management strategies. Here, we assembled a high-quality genome of T. tabaci at the chromosome level for the first time by using Illumina, PacBio long reads, and Hi-C technologies. The 329.59 Mb genome was obtained from 320 contigs, with a contig N50 of 1.53 Mb, and 94.21% of the assembly was anchored to 18 chromosomes. In total, 17,816 protein-coding genes were annotated, and 96.78% of BUSCO genes were fully represented. In conclusion, this high-quality genome provides a valuable genetic basis for our understanding of the biology of T. tabaci and contributes to the development of management strategies for cotton thrip.


Subject(s)
Genome, Insect , Thysanoptera , Animals , Thysanoptera/genetics , Gossypium/genetics , Gossypium/parasitology , Chromosomes, Insect/genetics
10.
PLoS One ; 19(9): e0306608, 2024.
Article in English | MEDLINE | ID: mdl-39288143

ABSTRACT

Graph theory provides a systematic method for modeling and analysing complicated biological data as an effective bioinformatics tool. Based on current trends, the number of DNA sequences in the DNA database is growing quickly. To determine the origin of a species and identify homologous sequences, it is crucial to detect similarities in DNA sequences. Alignment-free techniques are required for accurate measures of sequence similarity, which has been one of the main issues facing computational biologists. The current study provides a mathematical technique for comparing DNA sequences that are constructed in graph theory. The sequences of each DNA were divided into pairs of nucleotides, from which weighted loop digraphs and corresponding weighted vectors were computed. To check the sequence similarity, distance measures like Cosine, Correlation, and Jaccard were employed. To verify the method, DNA segments from the genomes of ten species of cotton were tested. Furthermore, to evaluate the efficacy of the proposed methodology, a K-means clustering method was performed. This study proposes a proof-of-model that utilises a distance matrix approach that promises impressive outcomes with future optimisations to be made to the suggested solution to get the hundred percent accurate result. In the realm of bioinformatics, this paper highlights the use of graph theory as an effective tool for biological data study and sequence comparison. It's expected that further optimization in the proposed solution can bring remarkable results, as this paper presents a proof-of-concept implementation for a given set of data using the proposed distance matrix technique.


Subject(s)
Gossypium , Gossypium/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods , DNA, Plant/genetics , Algorithms , Genome, Plant , Cluster Analysis
11.
Mol Biol Rep ; 51(1): 961, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235637

ABSTRACT

The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.


Subject(s)
Gossypium , Plant Infertility , Gossypium/genetics , Gossypium/physiology , Plant Infertility/genetics , Genetic Markers , Genes, Plant/genetics , Plant Breeding/methods , Seeds/genetics , Gene Expression Regulation, Plant/genetics , Alleles , Hybridization, Genetic/genetics
12.
BMC Plant Biol ; 24(1): 829, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232709

ABSTRACT

BACKGROUND: In research to improve the quality of transgenic crops, it is often necessary to introduce multiple functionally related genes into recipient plants simultaneously to improve crop genetic traits effectively. Compared with unidirectional promoters, bidirectional promoters simultaneously regulate the expression of multiple genes and improve the efficiency of biotechnology. Therefore, in this study, bidirectional gene pairs were systematically analyzed in Gossypium hirsutum TM-1, and the structure, function and evolutionary relationships of the bidirectional genes were analyzed. The endogenous bidirectional promoters of cotton were mined, and their specific regulatory elements and biological functions were explored to provide useful promoter resources and a theoretical basis for cultivating new cotton germplasms with excellent fiber quality. RESULTS: Using an improved search model, a total of 1,383 bidirectional transcript pairs were identified in the Gossypium hirsutum TM-1 genome, and their gene structure and functional annotations were systematically analyzed. Thirty bidirectional intergenic sequences were randomly screened for promoter activity analysis via a transient expression system, and 25 intergenic sequences were found to have bidirectional promoter activity. Comparative analysis of the bidirectional gene profiles of the four cotton subspecies revealed that these subspecies presented abundant bidirectional gene pairs with high homology and that the bidirectional genes in the cotton subspecies were more similar in terms of their molecular functions, cellular components and biological processes. In addition, parallel analysis of bidirectional genes in dicotyledons and monocotyledons revealed that abundant bidirectional gene pairs exist in different species. Although the total number of orthologous bidirectional genes was similar, there was a significant difference in the number of orthologous bidirectional gene pairs between dicotyledons and monocotyledons. This evolutionary analysis of the function and structure of homologous bidirectional gene pairs in different varieties and different subspecies of the same species revealed potential pathways by which these gene pairs originated, which may be necessary for the evolution of a new species. CONCLUSION: In this study, many bidirectional gene pairs in Gossypium hirsutum TM-1 were identified using computer programming, and systematic analysis was conducted to explore their functions and evolutionary relationships. In addition, the promoter activity of the bidirectional intergenic sequences was verified. The combination of computer programming screening, experimental validation and other methods is expected to provide preferred bidirectional promoters for transgenic breeding work via multigene cotransformation methods, and this information is valuable for genetic engineering research and applications.


Subject(s)
DNA, Intergenic , Gossypium , Promoter Regions, Genetic , Gossypium/genetics , Promoter Regions, Genetic/genetics , DNA, Intergenic/genetics , Genes, Plant , Gene Expression Regulation, Plant , Genome, Plant
13.
Funct Integr Genomics ; 24(5): 156, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230785

ABSTRACT

The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Seedlings , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Transcriptome , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing , Alternative Splicing , Sequence Analysis, RNA
14.
Theor Appl Genet ; 137(10): 217, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249496

ABSTRACT

KEY MESSAGE: GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.


Subject(s)
Chromosome Mapping , Gossypium , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Chromosome Mapping/methods , Transcriptome , Polymorphism, Single Nucleotide , Gene Expression Regulation, Plant , Genetic Linkage , Phenotype , Genes, Plant , Promoter Regions, Genetic , Gene Expression Profiling
15.
Physiol Plant ; 176(5): e14497, 2024.
Article in English | MEDLINE | ID: mdl-39223909

ABSTRACT

Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H2O2 and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Salt Stress/genetics , Salt Stress/physiology , Arabidopsis/genetics , Arabidopsis/physiology
16.
Theor Appl Genet ; 137(9): 207, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172262

ABSTRACT

KEY MESSAGE: Two genomic regions associated with FFBN and HFFBN and a potential regulatory gene (GhE6) of HFFBN were identified through the integration of RTM-GWAS and meta­QTL analyses. Abstract The first fruit branch node (FFBN) and the height of the first fruit branch node (HFFBN) are two important traits that are related to plant architecture and early maturation in upland cotton. Several studies have been conducted to elucidate the genetic basis of these traits in cotton using biparental and natural populations. In this study, by using 9,244 SNP linkage disequilibrium block (SNPLDB) loci from 315 upland cotton accessions, we carried out restricted two-stage multilocus and multiallele genome-wide association studies (RTM-GWASs) and identified promising haplotypes/alleles of the four stable and true major SNPLDB loci that were significantly associated with FFBN and HFFBN. Additionally, a meta-quantitative trait locus (MQTL) analysis was conducted on 274 original QTLs that were reported in 27 studies, and 40 MQTLs associated with FFBN and HFFBN were identified. Through the integration of the RTM-GWAS and meta­QTL analyses, two stable and true major SNPLDBs (LDB_5_15144433 and LDB_16_37952328) that were distributed in the two MQTLs were identified. Ultimately, 142 genes in the two genomic regions were annotated, and three candidate genes associated with FFBN and HFFBN were identified in the genomic region (A05:14.64-15.64 Mb) via RNA-Seq and qRT‒PCR. The results of virus-induced gene silencing (VIGS) experiments indicated that GhE6 was a key gene related to HFFBN and that GhDRM1 and GhGES were important genes associated with early flowering in upland cotton. These findings will aid in the future identification of molecular markers and genetic resources for developing elite early-maturing cultivars with ideal plant characteristics.


Subject(s)
Chromosome Mapping , Gossypium , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Phenotype , Genes, Plant , Haplotypes , Genetic Association Studies , Alleles , Genome-Wide Association Study , Fruit/genetics , Fruit/growth & development
17.
J Biotechnol ; 394: 92-102, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39181209

ABSTRACT

This study addresses the challenges posed by rainfall variability, leading to water deficits during critical stages of crop growth, resulting in a drastic reduction of cotton yield. In a comprehensive evaluation, thirty cotton genotypes, including five Gossypium arboreum (wild) and twenty-five Gossypium hirsutum (cultivated), were grown under rainfed and irrigated conditions. Drought tolerance indices (DTI) were evaluated, categorizing genotypes based on their resilience. Further, in-vitro screening at the seedling stage (20 days) under PEG-induced drought identified tolerant genotypes exhibiting elevated levels of free proline (19.07±5.31 mg.g-100fr.wt.), amino acids (34.59±6.51 mg.g-100fr.wt.), soluble proteins (13.73±2.65 mg.g-1fr.wt.), and glycine betaine (10.95±3.62 mg.g-100fr.wt.), in their leaves, positively correlating (p<0.001) with relative water content (87.70±3.45 %). Molecular analysis using drought-specific simple sequence repeats (SSR) markers revealed significant genetic variability in a cotton genotypes, with lower observed and higher expected heterozygosity. F statistics exposed a higher level of gene flow corresponding to low differentiation among populations. Among the genotypes group, wild GAM-67 and cultivated Deviraj emerged as the most potent, exhibiting the higher DTI and diverse gene pools. Study exhibited higher total gene diversity in drought-tolerant wild GAM-67 (0.8501) and greater expected heterozygosity (0.626) and gene flow (0.6731) in cultivated Deviraj, underlining their robust genetic adaptability to drought conditions. The integrated approach of field evaluations, in-vitro screening, and molecular analyses explained substantial genetic diversity, with the identification of promising genotypes displaying higher drought tolerance indices, elevated levels of stress-related biochemical osmolytes, and pronounced genetic adaptability, thereby contributing to the advancement of breeding initiatives for enhanced drought resilience in cotton.


Subject(s)
Droughts , Genotype , Gossypium , Plant Breeding , Gossypium/genetics , Gossypium/metabolism , Microsatellite Repeats/genetics , Genetic Variation , Stress, Physiological/genetics , Drought Resistance
18.
Physiol Plant ; 176(4): e14473, 2024.
Article in English | MEDLINE | ID: mdl-39129661

ABSTRACT

The jasmonic acid (JA) signaling pathway plays an important role in plant responses to abiotic stresses. The PEAPOD (PPD) and jasmonate ZIM-domain (JAZ) protein in the JA signaling pathway belong to the same family, but their functions in regulating plant defense against salt stress remain to be elucidated. Here, Gossypium arboreum PPD2 was overexpressed in Arabidopsis thaliana and systematically silenced in cotton for exploring its function in regulating plant defense to salt stress. The GaPPD2-overexpressed Arabidopsis thaliana plants significantly increased the tolerance to salt stress compared to the wild type in both medium and soil, while the GaPPD2-silenced cotton plants showed higher sensitivity to salt stress than the control in pots. The antioxidant activities experiment showed that GaPPD2 may mitigate the accumulation of reactive oxygen species by promoting superoxide dismutase accumulation, consequently improving plant resilience to salt stress. Through the exogenous application of MeJA (methy jasmonate) and the protein degradation inhibitor MG132, it was found that GaPPD2 functions in plant defense against salt stress and is involved in the JA signaling pathway. The RNA-seq analysis of GaPPD2-overexpressed A. thaliana plants and receptor materials showed that the differentially expressed genes were mainly enriched in antioxidant activity, peroxidase activity, and plant hormone signaling pathways. qRT-PCR results demonstrated that GaPPD2 might positively regulate plant defense by inhibiting GH3.2/3.10/3.12 expression and activating JAZ7/8 expression. The findings highlight the potential of GaPPD2 as a JA signaling component gene for improving the cotton plant resistance to salt stress and provide insights into the mechanisms underlying plant responses to environmental stresses.


Subject(s)
Arabidopsis , Cyclopentanes , Gene Expression Regulation, Plant , Gossypium , Oxylipins , Plant Proteins , Plant Roots , Salt Stress , Gossypium/genetics , Gossypium/physiology , Gossypium/drug effects , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Oxylipins/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , Salt Tolerance/genetics , Plant Growth Regulators/metabolism , Signal Transduction/drug effects
19.
Plant J ; 120(1): 289-301, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154347

ABSTRACT

Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. ß-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a ß-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.


Subject(s)
Gene Expression Regulation, Plant , Glucan 1,3-beta-Glucosidase , Gossypium , Plant Proteins , Seeds , Gossypium/genetics , Gossypium/growth & development , Gossypium/enzymology , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Cotton Fiber , Glucans/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Physiol Plant ; 176(4): e14491, 2024.
Article in English | MEDLINE | ID: mdl-39171614

ABSTRACT

The whitefly, a polyphagous insect pest feeding on nearly 1328 plant species, is a major threat to global cotton production and incurs up to 50% yield losses in cotton production in Pakistan. We investigated whether increased aspartate in phloem sap imparts whitefly toxicity and protects cotton plants from intense damage. The enzymatic step for aspartate production is carried through aspartate aminotransferase (AAT). In this study, we constitutively overexpressed the Oryza sativa cytoplasmic AAT (OsAAT2) under the CaMV35S promoter in Gossypium hirsutum cv. CIM-482. Real-time PCR analysis of the AAT transcripts revealed a 2.85- to 31.7-fold increase in mRNA levels between the different cotton lines. A substantial increase in the free-amino acid content of the major N-assimilation and transport amino acids (aspartate, glutamate, asparagine, and glutamine) was seen in the phloem sap of the transgenic cotton lines. The bioassay revealed that the two transgenic cotton lines with the highest free aspartate content in the phloem sap exhibited 97 and 94% mortality in the adult whitefly population and a 98 and 96% decline in subsequent nymph populations, respectively. There was also a significant change in the physiological behaviour of the transgenic cotton lines, with an increased net assimilation (A), gaseous exchange (Gs) and rate of transpiration (E). Improved morphological characteristics like plant height, total number of bolls and fiber yield were recorded in transgenic cotton lines. The AAT gene shows promise in mitigating whitefly infestations and enhancing the overall health and yield of cotton plants.


Subject(s)
Aspartic Acid , Gossypium , Hemiptera , Plants, Genetically Modified , Gossypium/genetics , Gossypium/metabolism , Gossypium/parasitology , Animals , Hemiptera/physiology , Plants, Genetically Modified/genetics , Aspartic Acid/metabolism , Oryza/genetics , Oryza/parasitology , Oryza/metabolism , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/genetics , Phloem/metabolism , Phloem/genetics , Plant Diseases/parasitology , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL