Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 994
Filter
1.
Theor Appl Genet ; 137(10): 217, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249496

ABSTRACT

KEY MESSAGE: GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.


Subject(s)
Chromosome Mapping , Gossypium , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Chromosome Mapping/methods , Transcriptome , Polymorphism, Single Nucleotide , Gene Expression Regulation, Plant , Genetic Linkage , Phenotype , Genes, Plant , Promoter Regions, Genetic , Gene Expression Profiling
2.
BMC Plant Biol ; 24(1): 825, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227761

ABSTRACT

In breeding programs, stress memory in plants can develop drought stress tolerance. Memory stress, as an approach, can keep stress data by activating tolerance mechanisms. This research was conducted to evaluate some physiologically effective mechanisms in inducing memory drought stress in the seeds that were exposed to water stress three times in four treatments including rainfed, 33%, 66%, and 100% of field capacity (FC). After the production of the seeds, the third-generation seeds were placed under different irrigation treatments, seed and seedling traits, starch to carbohydrate ratio in seed, protein concentration and glutathione reductase were investigatied in a factorial format based on a randomized complete block design with three replications. Results showed that percentage of changes from the lowest to the highest value for traits including seed vigor, seed endosperm weight, seed coat weight, accelerated aging, cold test, seedling biomass and seedling length were 25, 37, 65, 65, 55, 77, 55, 65 and 79, respectively and germination uniformity was 3.9 times higher than the lowest amount. According to the deterioration percentage, seed vigor and the percentage of seed germination in cold test data, it can be reported that seed production by 100% FC was not appropriate for rainfed plots. However, considering the the appropriate results in the percentage of germination for a cold test, germination uniformity percentage, and the lowest accelerated aging seeds, seed production under the rainfed conditions with 33% FC watering can be recommended. In-silico analysis was coducted on Glutathione reductase (GR) enzymes in Gossypium hirsutum. It is clear that GR has a Redox-active site and NADPH binding, and it interacts with Glutathione S transferase (GST). So, memory drought stress through inducing physiological drought tolerance mechanisms such as starch-to-carbohydrate ratio and GR can determine the suitable pattern for seed production for rainfed and low rainfall regions in a breeding program. Our study thus illustrated that seed reprduction under 33% FC equipped cotton with the tolerance against under draught stress from the seedling stage. This process is done through activating glutathione reductase and balancing the ratio of starch to carbohydrates concentration.


Subject(s)
Droughts , Glutathione Reductase , Gossypium , Seedlings , Gossypium/physiology , Gossypium/enzymology , Gossypium/growth & development , Glutathione Reductase/metabolism , Seedlings/physiology , Seedlings/growth & development , Computer Simulation , Stress, Physiological , Seeds/physiology , Seeds/growth & development , Plant Proteins/metabolism
3.
Funct Integr Genomics ; 24(5): 156, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230785

ABSTRACT

The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Seedlings , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Transcriptome , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing , Alternative Splicing , Sequence Analysis, RNA
4.
Theor Appl Genet ; 137(9): 214, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223330

ABSTRACT

KEY MESSAGE: A GWAS in an elite diversity panel, evaluated across 10 environments, identified genomic regions regulating six fiber quality traits, facilitating genomics-assisted breeding and gene discovery in upland cotton. In this study, an elite diversity panel of 348 upland cotton accessions was evaluated in 10 environments across the US Cotton Belt and genotyped with the cottonSNP63K array, for a genome-wide association study of six fiber quality traits. All fiber quality traits, upper half mean length (UHML: mm), fiber strength (FS: g tex-1), fiber uniformity (FU: %), fiber elongation (FE: %), micronaire (MIC) and short fiber content (SFC: %), showed high broad-sense heritability (> 60%). All traits except FE showed high genomic heritability. UHML, FS and FU were all positively correlated with each other and negatively correlated with FE, MIC and SFC. GWAS of these six traits identified 380 significant marker-trait associations (MTAs) including 143 MTAs on 30 genomic regions. These 30 genomic regions included MTAs identified in at least three environments, and 23 of them were novel associations. Phenotypic variation explained for the MTAs in these 30 genomic regions ranged from 6.68 to 11.42%. Most of the fiber quality-associated genomic regions were mapped in the D-subgenome. Further, this study confirmed the pleiotropic region on chromosome D11 (UHML, FS and FU) and identified novel co-localized regions on D04 (FU, SFC), D05 (UHML, FU, and D06 UHML, FU). Marker haplotype analysis identified superior combinations of fiber quality-associated genomic regions with high trait values (UHML = 32.34 mm; FS = 32.73 g tex-1; FE = 6.75%). Genomic analyses of traits, haplotype combinations and candidate gene information described in the current study could help leverage genetic diversity for targeted genetic improvement and gene discovery for fiber quality traits in cotton.


Subject(s)
Cotton Fiber , Genotype , Gossypium , Phenotype , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Cotton Fiber/analysis , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Association Studies , Linkage Disequilibrium , Chromosome Mapping/methods , Genome, Plant , Plant Breeding
5.
Theor Appl Genet ; 137(9): 207, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172262

ABSTRACT

KEY MESSAGE: Two genomic regions associated with FFBN and HFFBN and a potential regulatory gene (GhE6) of HFFBN were identified through the integration of RTM-GWAS and meta­QTL analyses. Abstract The first fruit branch node (FFBN) and the height of the first fruit branch node (HFFBN) are two important traits that are related to plant architecture and early maturation in upland cotton. Several studies have been conducted to elucidate the genetic basis of these traits in cotton using biparental and natural populations. In this study, by using 9,244 SNP linkage disequilibrium block (SNPLDB) loci from 315 upland cotton accessions, we carried out restricted two-stage multilocus and multiallele genome-wide association studies (RTM-GWASs) and identified promising haplotypes/alleles of the four stable and true major SNPLDB loci that were significantly associated with FFBN and HFFBN. Additionally, a meta-quantitative trait locus (MQTL) analysis was conducted on 274 original QTLs that were reported in 27 studies, and 40 MQTLs associated with FFBN and HFFBN were identified. Through the integration of the RTM-GWAS and meta­QTL analyses, two stable and true major SNPLDBs (LDB_5_15144433 and LDB_16_37952328) that were distributed in the two MQTLs were identified. Ultimately, 142 genes in the two genomic regions were annotated, and three candidate genes associated with FFBN and HFFBN were identified in the genomic region (A05:14.64-15.64 Mb) via RNA-Seq and qRT‒PCR. The results of virus-induced gene silencing (VIGS) experiments indicated that GhE6 was a key gene related to HFFBN and that GhDRM1 and GhGES were important genes associated with early flowering in upland cotton. These findings will aid in the future identification of molecular markers and genetic resources for developing elite early-maturing cultivars with ideal plant characteristics.


Subject(s)
Chromosome Mapping , Gossypium , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Phenotype , Genes, Plant , Haplotypes , Genetic Association Studies , Alleles , Genome-Wide Association Study , Fruit/genetics , Fruit/growth & development
6.
BMC Plant Biol ; 24(1): 787, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164616

ABSTRACT

BACKGROUND: Soil salinity is one of the major abiotic stresses that threatens crop growth. Cotton has some degree of salt tolerance, known as the "pioneer crop" of saline-alkali land. Cultivation of cotton is of great significance to the utilization of saline-alkali land and the development of cotton industry. Gossypium hirsutum and G. barbadense, as two major cotton species, are widely cultivated worldwide. However, until recently, the regulatory mechanisms and specific differences of their responses to salt stress have rarely been reported. RESULTS: In this study, we comprehensively compared the differences in the responses of G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 to salt stress. The results showed that Hai7124 exhibited better growth than did TM-1 under salt stress, with greater PRO content and antioxidant capability, whereas TM-1 only presented greater K+ content. Transcriptome analysis revealed significant molecular differences between the two cotton species in response to salt stress. The key pathways of TM-1 induced by salt are mainly related to growth and development, such as porphyrin metabolism, DNA replication, ribosome and photosynthesis. Conversely, the key pathways of Hai7124, such as plant hormone signal transduction, MAPK signaling pathway-plant, and phenylpropanoid biosynthesis, are mainly related to plant defense. Further comparative analyses of differentially expressed genes (DEGs) revealed that antioxidant metabolism, abscisic acid (ABA) and jasmonic acid (JA) signalling pathways were more strongly activated in Hai7124, whereas TM-1 was more active in K+ transporter-related genes and ethylene (ETH) signalling pathway. These differences underscore the various molecular strategies adopted by the two cotton species to navigate through salt stress, and Hai7124 responded more strongly to salt stress, which explains the potential reasons for the greater salt tolerance of Hai7124. Finally, we identified 217 potential salt tolerance-related genes, 167 of which overlapped with the confidence intervals of significant SNPs identified in previous genome-wide association studies (GWASs), indicating the high reliability of these genes. CONCLUSIONS: These findings provide new insights into the differences in the regulatory mechanisms of salt tolerance between G. hirsutum and G. barbadense, and identify key candidate genes for salt tolerance molecular breeding in cotton.


Subject(s)
Gossypium , Salt Stress , Salt Tolerance , Gossypium/genetics , Gossypium/physiology , Gossypium/growth & development , Salt Tolerance/genetics , Salt Stress/genetics , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Species Specificity
7.
J Plant Physiol ; 302: 154324, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39167998

ABSTRACT

The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.


Subject(s)
Gossypium , Heat-Shock Response , Gossypium/physiology , Gossypium/genetics , Gossypium/growth & development , Heat-Shock Response/physiology , Adaptation, Physiological , Plant Breeding/methods
8.
PLoS One ; 19(8): e0308736, 2024.
Article in English | MEDLINE | ID: mdl-39141657

ABSTRACT

Adapting organic farming to climate change is a major issue. Cotton yields in Mali are declining due to deteriorating climatic conditions, soil fertility, and poor management. This study aimed to improve organic cotton yield in Mali in the future climate with the optimal choice of compost type, date, and dose of application. Experimental data collected in 2021 from the Sotuba research station in Mali was used for calibration and evaluation of the crop model DSSAT CSM-CROPGRO-Cotton model using phenology, leaf area index, and seed cotton yield. Climate data from the RCP4.5 and RCP8.5 scenarios of the GFDL-ESM2M model were used for future weather datasets for 2020-2039, 2040-2059, and 2060-2079. The model was able to simulate anthesis and maturity with excellent results, with nRMSE < 4%, and seed cotton yields moderately well, an nRMSE of 26% during calibration and 20.3% in evaluation. The scenario RCP8.5 from 2060 to 2079 gave the best seed cotton yields. Seed cotton yields with RCP4.5 and RCP8.5 were all better with the mid-May application period of small ruminant silo compost at 7.5 t/ha. In such conditions, more than 75% of the cases would produce more than 2000 kg/ha of seed cotton.


Subject(s)
Climate Change , Composting , Fertilizers , Gossypium , Gossypium/growth & development , Composting/methods , Mali , Soil/chemistry , Organic Agriculture/methods , Models, Theoretical
9.
Genes (Basel) ; 15(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39202340

ABSTRACT

Fiber quality improvement is a primary goal in cotton breeding. Identification of fiber quality-related genes and understanding the underlying molecular mechanisms are essential prerequisites. Previously, studies determined that silencing the gene GhWRKY40 resulted in longer cotton fibers; however, both the underlying mechanisms and whether this transcription factor is additionally involved in the regulation of cotton fiber strength/fineness are unknown. In the current study, we verified that GhWRKY40 influences the fiber strength, fiber fineness, and fiber surface structure by using virus-induced gene silencing (VIGS). Potential proteins that may interact with the nucleus-localized GhWRKY40 were screened in a yeast two-hybrid (Y2H) nuclear-system cDNA library constructed from fibers at 0, 10, and 25 days post-anthesis (DPA) in two near-isogenic lines differing in fiber length and strength. An aspartyl protease/asparaginase-related protein, GhAPD6, was identified and confirmed by Y2H and split-luciferase complementation assays. The expression of GhAPD6 was approximately 30-fold higher in the GhWRKY40-VIGS lines at 10 DPA and aspartyl protease activity was significantly upregulated in the GhWRKY40-VIGS lines at 10-20 DPA. This study suggested that GhWRKY40 may interact with GhAPD6 to regulate fiber development in cotton. The results provide a theoretical reference for the selection and breeding of high-quality cotton fibers assisted by molecular technology.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Transcription Factors , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Asparaginase/genetics , Asparaginase/metabolism
10.
Genes (Basel) ; 15(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202437

ABSTRACT

Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Phosphoproteins , Plant Proteins , Proteomics , Regeneration , Gossypium/metabolism , Gossypium/genetics , Gossypium/growth & development , Phosphoproteins/metabolism , Phosphoproteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proteomics/methods , Regeneration/genetics , Regeneration/physiology , Phosphorylation , Proteome/metabolism , Plant Somatic Embryogenesis Techniques/methods , Protein Processing, Post-Translational
11.
Methods Mol Biol ; 2812: 215-233, 2024.
Article in English | MEDLINE | ID: mdl-39068365

ABSTRACT

Plants stem cells, known as meristems, specify all patterns of growth and organ size. Differences in meristem activities contribute to diverse shoot architectures. As many architectural traits, such as branching patterns, flowering time, and fruit size, are yield determinants, meristem regulation is of fundamental importance to crop productivity. Cotton (Gossypium spp.) produces our most prevalent natural fiber that finds its way into products ranging from industrial cellulose, medical supplies, and paper currency, to a broad diversity of textiles, not least of which is our clothing. However, the cotton plant has growth habits that challenge management practices and limit harvest yield and quality. Unraveling and leveraging the genetic networks regulating meristem activities offers the potential to overcome these limitations. We use virus-based technologies in cotton to perturb signals regulating meristem fate and size. In this chapter, we describe our pipeline for altering cotton meristem dynamics and preparing, analyzing, and exploring the transcriptomes from isolated meristems.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Meristem , RNA-Seq , Transcriptome , Meristem/genetics , Meristem/growth & development , Gossypium/genetics , Gossypium/growth & development , Transcriptome/genetics , RNA-Seq/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Profiling/methods
12.
Microbiol Res ; 287: 127836, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39018831

ABSTRACT

Verticillium dahliae is a destructive, soil-borne pathogen that causes significant losses on numerous important dicots. Recently, beneficial microbes inhabiting the rhizosphere have been exploited and used to control plant diseases. In the present study, Burkholderia gladioli KRS027 demonstrated excellent inhibitory effects against Verticillium wilt in cotton seedlings. Plant growth and development was promoted by affecting the biosynthesis and signaling pathways of brassinosteroids (BRs), gibberellins (GAs), and auxins, consequently promoting stem elongation, shoot apical meristem, and root apical tissue division in cotton. Furthermore, based on the host transcriptional response to V. dahliae infection, it was found that KRS027 modulates the plants to maintain cell homeostasis and respond to other pathogen stress. Moreover, KRS027 induced disruption of V. dahliae cellular structures, as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Based on the comparative transcriptomic analysis between KRS027 treated and control group of V. dahliae, KRS027 induced substantial alterations in the transcriptome, particularly affecting genes encoding secreted proteins, small cysteine-rich proteins (SCRPs), and protein kinases. In addition, KRS027 suppressed the growth of different clonal lineages of V. dahliae strains through metabolites, and volatile organic compounds (VOCs) released by KRS027 inhibited melanin biosynthesis and microsclerotia development. These findings provide valuable insights into an alternative biocontrol strategy for Verticillium wilt, demonstrating that the antagonistic bacterium KRS027 holds promise as a biocontrol agent for promoting plant growth and managing disease occurrence.


Subject(s)
Ascomycota , Burkholderia gladioli , Plant Diseases , Transcriptome , Plant Diseases/microbiology , Plant Diseases/prevention & control , Burkholderia gladioli/growth & development , Burkholderia gladioli/genetics , Burkholderia gladioli/metabolism , Ascomycota/growth & development , Ascomycota/genetics , Gossypium/microbiology , Gossypium/growth & development , Plant Development , Plant Growth Regulators/metabolism , Seedlings/microbiology , Seedlings/growth & development , Gene Expression Profiling , Host-Pathogen Interactions , Biological Control Agents , Indoleacetic Acids/metabolism , Gibberellins/metabolism , Verticillium
13.
Plant Physiol Biochem ; 214: 108888, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954944

ABSTRACT

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.


Subject(s)
Arabidopsis , Cyclopentanes , Endoreduplication , Gene Expression Regulation, Plant , Gossypium , Oxylipins , Plant Proteins , Trichomes , Trichomes/genetics , Trichomes/growth & development , Trichomes/metabolism , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Endoreduplication/genetics , Brassinosteroids/metabolism , Plants, Genetically Modified , Genes, Plant , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Steroids, Heterocyclic
14.
J Environ Manage ; 366: 121702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986376

ABSTRACT

Phosphorus (P) fertilisers are under scrutiny due to resource constraints and environmental impacts. Simple rock phosphate (RP) modifications with acids and co-applied with microbial inoculum could offer sustainable alternative P fertiliser products. We evaluated the effects of acid-treated rock phosphate (RP) in combination with fungal inoculum on plant establishment, environmental impacts (nutrient leaching) and soil quality in a 5-month pot trial. The treatments were evaluated in a clayey Vertisol and a silty Acrisol using cotton (Gossypium hirsutum) as a model plant. The RP treatments - apart from the unmodified and HCl products - were effective in promoting plant establishment with two of the microbial formulations superior to conventional P fertilisers by an average factor of 2 in both soil types (p < 0.05). All RP products restricted P leaching compared with conventional P fertilisers (p < 0.05), by an average factor of 5 for diammonium phosphate (DAP) in both soil types and 3 for the triple superphosphate TSP (only in Acrisol). Nitrate leaching from all treatments was high although much lower from the RP treatments compared with the conventional fertilisers towards the end of the establishment trial, by an average factor of 1.5 (p < 0.05). Ranking analysis revealed that some RP treatments showed evidence for improved ongoing soil quality, including decreased P leaching and soil acidification risks. Microbial analysis showed complex interactions between treatment and soil type. Nonetheless, inoculum persistence at the end of the plant establishment phase was observed for all pots analysed. Our results demonstrate that relatively simple modifications to RP could pave the way for developing sustainable P fertilisers.


Subject(s)
Fertilizers , Phosphorus , Soil , Phosphorus/analysis , Fertilizers/analysis , Soil/chemistry , Phosphates , Gossypium/growth & development
15.
Sci Rep ; 14(1): 17085, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39048661

ABSTRACT

The compositional nutrient diagnosis-CND method is a standard tool for evaluating plant nutritional status. Adjustments are crucial to elevate accuracy. The effectiveness of such methodological refinements should be rigorously assessed through accuracy tests that are benchmarked against the prescient diagnostic analysis-PDA methodology. The objective of this investigation was to refine the CND technique for a more precise evaluation of N, P, and B nutrient status in cotton. The study's database encompasses 144 data points pertaining to crop yield and foliar nutrient concentrations from cotton plantations in the Cerrado biome of Brazil. Subsequently, the CND norms were established through rigorous calibration. Three separate nutrient-dose trials, each featuring four levels of N, P and B, were carried out to assess plant true nutritional status. Adjustments were made to the nutrient responsiveness range-NRr (0.5 and 1.0), while yield response-YR were scrutinized at threshold levels (5% and 10%). The prerequisites for achieving high diagnostic accuracy were nutrient specific. For N, maximal accuracy was linked only to the YR parameter (YR = 10%). For P, the most precise outcomes were attained with a NRr = 0.5 and YI = 5%. For B, highest diagnostic accuracy when the NRr = 1.0 and YI = 10%. These insights highlight the need to fine-tune the CND method for reliable nutritional evaluations and cotton crop productivity optimization.


Subject(s)
Crops, Agricultural , Gossypium , Nitrogen , Gossypium/growth & development , Nitrogen/analysis , Nitrogen/metabolism , Crops, Agricultural/growth & development , Phosphorus/analysis , Phosphorus/metabolism , Brazil
16.
Ecotoxicol Environ Saf ; 283: 116786, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083869

ABSTRACT

Cd ions are absorbed and transported from the soil by crop roots, which are the first organ to be exposed to Cd. This results in an increase in cadmium ions in crops, significantly affecting crop growth and yield. Exogenous melatonin (MT) can help reduce cadmium (Cd) stress in cotton, but the specific contribution of roots to this process remains unclear. In order to address this knowledge gap, an in-situ root phenotyping study was conducted to investigate the the phenotype and lifespan of roots under cadmium stress (Cd) and melatonin treatment (Cd + MT). The results showed that MT alleviated the decreases in plant height, leaf area, SPAD value, stem diameter, stomatal conductance and net photosynthetic rate under Cd stress, which further promoted the biomass accumulation in various cotton organs. What is more, the Cd + MT treatment increased root volume, surface area, and length under Cd stress by 25.63 %, 10.58 %, and 21.89 %, respectively, compared with Cd treatment. Interestingly, compared to Cd treatment, Cd + MT treatment also significantly extended the lifespan of roots and root hairs by 6.68 days and 2.18 days, respectively. In addition, Cd + MT treatment reduced the transport of Cd from roots to shoots, particularly to bolls, and decreased the Cd bioconcentration factor in bolls by 61.17 %, compared to Cd treatment. In conclusion, these findings show that applying MT externally helps reduce Cd stress by delaying root senescence, promoting root development and regulating Cd transport. This method can be an effective approach to managing Cd stress in cotton.


Subject(s)
Cadmium , Gossypium , Melatonin , Plant Roots , Soil Pollutants , Gossypium/drug effects , Gossypium/growth & development , Melatonin/pharmacology , Cadmium/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Soil Pollutants/toxicity , Biological Transport/drug effects
17.
PeerJ ; 12: e17682, 2024.
Article in English | MEDLINE | ID: mdl-38993976

ABSTRACT

To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.


Subject(s)
Cell Wall , Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Cotton Fiber/analysis , Cell Wall/metabolism , Cell Wall/genetics , Gene Expression Profiling , Transcriptome
18.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000183

ABSTRACT

Landraces are an important reservoir of genetic variation that can expand the narrow genetic base of cultivated cotton. In this study, quantitative trait loci (QTL) analysis was conducted using an F2 population developed from crosses between the landrace Hopi and inbred TM-1. A high-density genetic map spanning 2253.11 and 1932.21 cM for the A and D sub-genomes, respectively, with an average marker interval of 1.14 cM, was generated using the CottonSNP63K array. The linkage map showed a strong co-linearity with the physical map of cotton. A total of 21 QTLs were identified, controlling plant height (1), bract type (1), boll number (1), stem color (2), boll pitting (2), fuzz fiber development (2), boll shape (3), boll point (4), and boll glanding (5). In silico analysis of the novel QTLs for boll glanding identified a total of 13 candidate genes. Analysis of tissue-specific expression of the candidate genes suggests roles for the transcription factors bHLH1, MYB2, and ZF1 in gland formation. Comparative sequencing of open reading frames identified early stop codons in all three transcription factors in Hopi. Functional validation of these genes offers avenues to reduce glanding and, consequently, lower gossypol levels in cottonseeds without compromising the defense mechanisms of the plant against biotic stresses.


Subject(s)
Chromosome Mapping , Gossypium , Quantitative Trait Loci , Gossypium/genetics , Gossypium/growth & development , Plant Proteins/genetics , Genetic Linkage , Chromosomes, Plant/genetics , Phenotype , Gene Expression Regulation, Plant , Genes, Plant
19.
BMC Plant Biol ; 24(1): 554, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877405

ABSTRACT

BACKGROUND: Epidermal patterning factor / -like (EPF/EPFL) gene family encodes a class of cysteine-rich secretory peptides, which are widelyfound in terrestrial plants.Multiple studies has indicated that EPF/EPFLs might play significant roles in coordinating plant development and growth, especially as the morphogenesis processes of stoma, awn, stamen, and fruit skin. However, few research on EPF/EPFL gene family was reported in Gossypium. RESULTS: We separately identified 20 G. raimondii, 24 G. arboreum, 44 G. hirsutum, and 44 G. barbadense EPF/EPFL genes in the 4 representative cotton species, which were divided into four clades together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 17 Selaginella moellendorffii ones based on their evolutionary relationships. The similar gene structure and common motifs indicated the high conservation among the EPF/EPFL members, while the uneven distribution in chromosomes implied the variability during the long-term evolutionary process. Hundreds of collinearity relationships were identified from the pairwise comparisons of intraspecifc and interspecific genomes, which illustrated gene duplication might contribute to the expansion of cotton EPF/EPFL gene family. A total of 15 kinds of cis-regulatory elements were predicted in the promoter regions, and divided into three major categories relevant to the biological processes of development and growth, plant hormone response, and abiotic stress response. Having performing the expression pattern analyses with the basic of the published RNA-seq data, we found most of GhEPF/EPFL and GbEPF/EPFL genes presented the relatively low expression levels among the 9 tissues or organs, while showed more dramatically different responses to high/low temperature and salt or drought stresses. Combined with transcriptome data of developing ovules and fibers and quantitative Real-time PCR results (qRT-PCR) of 15 highly expressed GhEPF/EPFL genes, it could be deduced that the cotton EPF/EPFL genes were closely related with fiber development. Additionally, the networks of protein-protein interacting among EPF/EPFLs concentrated on the cores of GhEPF1 and GhEPF7, and thosefunctional enrichment analyses indicated that most of EPF/EPFLs participate in the GO (Gene Ontology) terms of stomatal development and plant epidermis development, and the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of DNA or base excision repair. CONCLUSION: Totally, 132 EPF/EPFL genes were identified for the first time in cotton, whose bioinformatic analyses of cis-regulatory elements and expression patterns combined with qRT-PCR experiments to prove the potential functions in the biological processes of plant growth and responding to abiotic stresses, specifically in the fiber development. These results not only provide comprehensive and valuable information for cotton EPF/EPFL gene family, but also lay solid foundation for screening candidate EPF/EPFL genes in further cotton breeding.


Subject(s)
Gossypium , Multigene Family , Plant Proteins , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant , Genome-Wide Association Study , Gene Expression Profiling , Protein Interaction Maps
20.
J Agric Food Chem ; 72(25): 14326-14336, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870410

ABSTRACT

Cadmium (Cd) is a hazardous element that may jeopardize environmental safety and human health through biotransfer and trophic accumulation. Here, we tested Cd toxicity on cotton plants, cotton bollworms, and their responses. Results demonstrated that Cd accumulated in plant roots, aerial parts, insect larvae, pupae, and frass in a dose-dependent pattern. The ∼9.35 mg kg-1 of Cd in plant aerial parts, ∼3.68 in larvae, ∼6.43 in pupae, and high transfer coefficient (∼5.59) indicate significant mobility. The ∼19.61 mg kg-1 of Cd in larvae frass suggests an effective detoxification strategy, while BAFcotton (∼1.14) and BAFworm (∼0.54) indicated low bioaccumulation. Cadmium exposure resulted in compromised plant growth and yield as well as alterations in photosynthetic pigment contents, antioxidant enzyme activities, and certain life history traits of cotton bollworms. Furthermore, carboxylesterase activity and encapsulation rates of insect larvae decreased with increasing Cd concentrations, whereas acetylcholinesterase, phenol oxidase, glutathione S-transferase, and multifunctional oxidase exhibited hormesis responses.


Subject(s)
Cadmium , Gossypium , Larva , Soil Pollutants , Animals , Cadmium/metabolism , Cadmium/toxicity , Larva/growth & development , Larva/metabolism , Larva/drug effects , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Gossypium/growth & development , Gossypium/metabolism , Gossypium/parasitology , Moths/growth & development , Moths/metabolism , Moths/drug effects , Inactivation, Metabolic , Glutathione Transferase/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/chemistry , Plant Roots/parasitology , Monophenol Monooxygenase/metabolism , Biotransformation , Acetylcholinesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL