Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.435
Filter
1.
Braz J Biol ; 84: e284085, 2024.
Article in English | MEDLINE | ID: mdl-38958299

ABSTRACT

The current study evaluates the antibacterial activity of Camponotus compressus (Hymenoptera: Formicidae) body crude extracts. The increasing antibiotic resistance of bacteria has prompted the world to turn its attention towards insects in the search for new sources of antibacterial compounds. The body crude extract obtained with different solvents were tested against both Gram positive (Staphylococcus aureus, Bacillus subtilis) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Standard disc diffusion method was used to perform the activity. The extracts of C. compressus were investigated for their effectiveness against all resistant pathogenic bacteria. Staphylococcus aureus was found to be the most susceptible, exhibiting a high average growth inhibition, while Bacillus subtilis showed a lower average growth inhibition zone. Our findings regarding the inhibitory effect of C. compressus extracts show the presence of a broad-spectrum antibacterial compound. This will be helpful in the search for novel natural antibiotics against robust pathogenic bacterial strains.


Subject(s)
Anti-Bacterial Agents , Ants , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Ants/drug effects , Complex Mixtures/pharmacology
2.
Bioorg Med Chem ; 109: 117810, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906069

ABSTRACT

The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Candida albicans , Microbial Sensitivity Tests , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Porphyrins/chemical synthesis , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Fungi/drug effects
3.
Bioorg Med Chem Lett ; 109: 129822, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823728

ABSTRACT

The quest for novel antibacterial agents is imperative in the face of escalating antibiotic resistance. Naturally occurring tetrahydro-ß-carboline (THßC) alkaloids have been highlighted due to their significant biological derivatives. However, these structures have been little explored for antibacterial drugs development. In this study, a series of 1,2,3,4-THßC derivatives were synthesized and assessed for their antibacterial prowess against both gram-positive and gram-negative bacteria. The compounds exhibited moderate to good antibacterial activity, with some compounds showing superior efficacy against gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), to that of Gentamicin. Among these analogs, compound 3k emerged as a hit compound, demonstrating rapid bactericidal action and a significant post-antibacterial effect, with significant cytotoxicity towards human LO2 and HepG2 cells. In addition, compound 3k (10 mg/kg) showed comparable anti-MRSA efficacy to Ciprofloxacin (2 mg/kg) in a mouse model of abdominal infection. Overall, the present findings suggested that THßC derivatives based on the title compounds hold promising applications in the development of antibacterial drugs.


Subject(s)
Anti-Bacterial Agents , Carbolines , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/chemical synthesis , Humans , Structure-Activity Relationship , Animals , Mice , Gram-Positive Bacteria/drug effects , Molecular Structure , Gram-Negative Bacteria/drug effects , Dose-Response Relationship, Drug , Hep G2 Cells , Methicillin-Resistant Staphylococcus aureus/drug effects
4.
ACS Appl Mater Interfaces ; 16(25): 32087-32103, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38866723

ABSTRACT

Due to the extensive use of antibiotics, many highly resistant bacteria and extensively resistant bacteria have been produced. In recent years, the increase of drug-resistant bacteria and the resulting proliferation of drug-resistant bacteria have increased the incidence of hospital-acquired infections and caused great harm to human health. Antimicrobial peptides (AMPs) are considered to be an innovative antibiotic and belong to the latest advances in this field. We designed a polypeptide and verified its low minimum inhibitory concentration and broad-spectrum activity against Gram-positive bacteria, Gram-negative bacteria, and fungi in microbiology and pharmacology. Several experiments have confirmed that the screened antimicrobial peptides have significant antidrug resistance and also show significant therapeutic properties in the treatment of systemic bacterial infections. In addition, through our experimental research, it was proved that the antibacterial hydrogel composed of poly(vinyl alcohol), sodium alginate, and antimicrobial peptides had excellent antibacterial properties and showed good wound healing ability.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Gram-Negative Bacteria/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Gram-Positive Bacteria/drug effects , Alginates/chemistry , Alginates/pharmacology
5.
J Nat Prod ; 87(6): 1591-1600, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38862138

ABSTRACT

Mangrove derived actinomycetes are a rich reservoir of bioactive natural products and play important roles in pharmaceutical chemistry. In a screen of actinomycetes from mangrove rhizosphere sedimental environments, the isolated strain Streptomyces sp. SCSIO 40068 displayed strong antibacterial activity. Further fractionation of the extract yielded four new compounds kebanmycins A-D (1-4) and two known analogues FD-594 (5) and the aglycon (6). The structures of 1-6 were determined based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. 1-3 featured a fused pyranonaphthaxanthene as an integral part of a 6/6/6/6/6/6 polycyclic motif, and showed bioactivity against a series of Gram-positive bacteria and cytotoxicity to several human tumor cells. In addition, the kebanmycins biosynthetic gene cluster (keb) was identified in Streptomyces sp. SCSIO 40068, and KebMT2 was biochemically characterized as a tailoring sugar-O-methyltransferase, leading to a proposed biosynthetic route to 1-6. This study paves the way to further investigate 1 as a potential lead compound.


Subject(s)
Anti-Bacterial Agents , Streptomyces , Streptomyces/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Molecular Structure , Microbial Sensitivity Tests , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Gram-Positive Bacteria/drug effects , Multigene Family , Drug Screening Assays, Antitumor , Rhizophoraceae/microbiology
6.
Expert Opin Pharmacother ; 25(8): 1027-1037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863433

ABSTRACT

INTRODUCTION: Infections due to multidrug-resistant organisms (MDRO) are a serious concern for public health with high morbidity and mortality. Though many antibiotics have been introduced to manage these infections, there are remaining concerns regarding the optimal management of Gram-positive MDROs. AREAS COVERED: A literature search on the PubMed/Medline database was conducted. We applied no language and time limits for the search strategy. In this narrative review, we discuss the current options for managing Gram-positive MDROs as well as non-traditional antibacterial agents in development. EXPERT OPINION: Despite their introduction more than 70 years ago, glycopeptides are still the cornerstone in treating Gram-positive infections: all registrative studies of new antibiotics have glycopeptides as control; these studies are designed as not inferior studies, therefore it is almost impossible to give recommendations other than the use of glycopeptides in the treatment of Gram-positive infections. The best evidence on treatments different from glycopeptides comes from post-hoc analysis and meta-analysis. Non-traditional antibacterial agents are being studied to aid in short and effective antibiotic therapies. The use of non-traditional antibacterial agents is not restricted to replacing traditional antibacterial agents with alternative therapies; instead, they should be used in combination with antibiotic therapies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Glycopeptides , Gram-Positive Bacteria , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Glycopeptides/therapeutic use , Gram-Positive Bacteria/drug effects , Drug Development , Animals
7.
Microbiol Spectr ; 12(7): e0295223, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842361

ABSTRACT

The study aimed to investigate the antibacterial activity, cytotoxicity, and mechanism of action of the non-ionic, cyclic lipopeptide, serrawettin W2-FL10 against Staphylococcus aureus. W2-FL10 exhibited potent activity against the Gram-positive bacteria S. aureus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, and Bacillus subtilis, with minimum inhibitory concentration (MIC) values ranging from 6.3 to 31.3 µg/mL, while no activity was observed against Gram-negative bacteria. Broth microdilution assays showed that W2-FL10 interacted with key cell membrane components, such as lipid phosphatidyl glycerol and lipoteichoic acid of S. aureus. Upon membrane interaction, W2-FL10 dissipated membrane potential within 12 min and increased S. aureus membrane permeability within 28-40 min, albeit at slower rates and higher concentrations than the lytic peptide melittin. The observed membrane permeability, as detected with propidium iodide (PI), may be attributed to transmembrane pores/lesions, possibly dependent on dimer-driven lipopeptide oligomerization in the membrane. Scanning electron microscopy (SEM) imaging also visually confirmed the formation of lesions in the cell wall of one of the S. aureus strains, and cell damage within 1 h of exposure to W2-FL10, corroborating the rapid time-kill kinetics of the S. aureus strains. This bactericidal action against the S. aureus strains corresponded to membrane permeabilization by W2-FL10, indicating that self-promoted uptake into the cytosol may be part of the mode of action. Finally, this lipopeptide exhibited low to moderate cytotoxicity to the Chinese hamster ovarian (CHO) cell line in comparison to the control (emetine) with an optimal lipophilicity range (log D value of 2.5), signifying its potential as an antibiotic candidate. IMPORTANCE: Antimicrobial resistance is a major public health concern, urgently requiring antibacterial compounds exhibiting low adverse health effects. In this study, a novel antibacterial lipopeptide analog is described, serrawettin W2-FL10 (derived from Serratia marcescens), with potent activity displayed against Staphylococcus aureus. Mechanistic studies revealed that W2-FL10 targets the cell membrane of S. aureus, causing depolarization and permeabilization because of transmembrane lesions/pores, resulting in the leakage of intracellular components, possible cytosolic uptake of W2-FL10, and ultimately cell death. This study provides the first insight into the mode of action of a non-ionic lipopeptide. The low to moderate cytotoxicity of W2-FL10 also highlights its application as a promising therapeutic agent for the treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents , Cell Membrane , Lipopeptides , Microbial Sensitivity Tests , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Animals , Staphylococcus aureus/drug effects , Gram-Positive Bacteria/drug effects , Cell Membrane Permeability/drug effects , Teichoic Acids/metabolism , Teichoic Acids/chemistry , Gram-Negative Bacteria/drug effects
8.
Dalton Trans ; 53(26): 10890-10900, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874585

ABSTRACT

Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW)3 motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF4)2·6H2O formed exclusively CoL2 dimers (for peptides with one tpy ligand each) and Co2L4 metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate. The Co-peptide complexes were characterised by mass spectrometry and in solution by NMR spectroscopy, including 2D diffusion ordered NMR spectroscopy (DOSY) which confirmed the proposed stoichiometries. The antimicrobial activity of the novel peptides and their metallo-supramolecular assemblies was investigated by determination of their minimal inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Complexation with cobalt increases the activity of the peptides in almost every case. Most of the new metal-peptide conjugates showed good activity against Gram-positive bacteria, including a multi-resistant S. aureus strain and the opportunistic pathogenic yeast C. albicans (down to 7 µmol l-1 for the most active Co2L4 derivate), a value that is increased five-fold compared to the lysine-derivatized peptide ligand alone. Interestingly, conjugates of the CoL2 type also showed decent activity against Gram-negative bacteria including the WHO-flagged problematic A. baumannii strain (down to 18 µmol l-1 for the most active derivative).


Subject(s)
Anti-Bacterial Agents , Cobalt , Gram-Positive Bacteria , Microbial Sensitivity Tests , Cobalt/chemistry , Cobalt/pharmacology , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Ligands
9.
Nano Lett ; 24(26): 7868-7878, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912706

ABSTRACT

Wound infections, especially those caused by pathogenic bacteria, present a considerable public health concern due to associated complications and poor therapeutic outcomes. Herein, we developed antibacterial nanoparticles, namely, PGTP, by coordinating guanidine derivatives with a porphyrin-based sonosensitizer. The synthesized PGTP nanoparticles, characterized by their strong positive charge, effectively disrupted the bacterial biosynthesis process through charge interference, demonstrating efficacy against both Gram-negative and Gram-positive bacteria. Additionally, PGTP nanoparticles generated reactive oxygen species under ultrasound stimulation, resulting in the disruption of biofilm integrity and efficient elimination of pathogens. RNA-seq analysis unveiled the detailed mechanism of wound healing, revealing that PGTP nanoparticles, when coupled with ultrasound, impair bacterial metabolism by interfering with the synthesis and transcription of amino acids. This study presents a novel approach to combatting wound infections through ultrasound-driven charge-interfering therapy, facilitated by advanced antibacterial nanomaterials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Nanoparticles , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Wound Infection/microbiology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Biofilms/drug effects , Animals , Mice , Ultrasonic Waves , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/therapeutic use , Ultrasonic Therapy/methods , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
10.
Biomed Mater ; 19(5)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917818

ABSTRACT

N-chloro-N-fluorobenzenesulfonylamide (CFBSA), was a novel chlorinating reagent, which exhibits potential antibacterial activities. In this study, CFBSA was confirmed as a wide-broad antimicrobial and bactericidal drug against different gram-negative bacteria, gram-positive bacteria and fungi, while it was found to have low cytotoxicity for eukaryotic cells. In addition, microorganism morphology assay and oxidative stress test was used to determine the antimicrobial mechanisms of CFBSA. According to the results, CFBSA probably had a target on cell membrane and killed microorganism by disrupting its cell membrane. Then, CFBSA was first combined with poly(L-lactide-co-caprolactone) (PLCL)/SF via electrospinning and applied in wound dressings. The characterization of different PLCL/SF of CFBSA-loaded nanofibrous mats was investigated by SEM, water contact angle, Fourier transform infrared spectroscopy, cell compatibility and antimicrobial test. CFBSA-loaded PLCL/SF nanofibrous mats showed excellent antimicrobial activities. In order to balance of the biocompatibility and antibacterial efficiency, SP-2.5 was selected as the ideal loading concentration for further application of CFBSA-loaded PLCL/SF. In conclusion, the electrospun CFBSA-loaded PLCL/SF nanofibrous mat with its broad-spectrum antimicrobial and bactericidal activity and good biocompatibility showed enormous potential for wound dressing.


Subject(s)
Anti-Bacterial Agents , Bandages , Nanofibers , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Microbial Sensitivity Tests , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Wound Healing/drug effects , Spectroscopy, Fourier Transform Infrared , Gram-Negative Bacteria/drug effects , Humans , Materials Testing , Animals , Gram-Positive Bacteria/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Oxidative Stress/drug effects
11.
F1000Res ; 13: 36, 2024.
Article in English | MEDLINE | ID: mdl-38872735

ABSTRACT

Background: Tigecycline, a glycylcycline antibiotic is a promising option for the treatment of single or multidrug resistant pathogens. The aim of the study was to evaluate the in-vitro Tigecycline susceptibility of various pathogens from clinical samples received at the tertiary care hospitals in South India. Methods: The analysis of specimens from patients admitted were carried out in this prospective cross sectional study. The identification and antimicrobial susceptibility testing was performed by semi-automated Vitek 2 systems and Kirby Bauer method. Pattern of data analysis was done by descriptive statistics. Results: Among 2574 isolates, 812 isolates were Gram positive pathogens and 1762 isolates were Gram negative pathogens. Resistance to Tigecycline was more common among Gram negative pathogens (18.62%) in comparison to the Gram positive pathogens (0.49%). Among 740 Extended Spectrum Beta Lactamases (ESBL) producers such as Klebsiella species & E coli, 629 isolates were susceptible, and 93 isolates were resistant to the tigecycline. All the methicillin resistant Staphylococcus aureus (MRSA) isolates were susceptible to tigecycline. Conclusion: Multidrug resistant (MDR) pathogens like Acinetobacter species, and Klebsiella species were found to be highly effective in vitro to tigecycline for elimination of infections caused by both Gram positive and Gram negative pathogens. The use of combination therapy becomes crucial to prevent the development of Pan Drug resistance.


Subject(s)
Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tertiary Care Centers , Tigecycline , Tigecycline/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Minocycline/analogs & derivatives , Minocycline/pharmacology , Minocycline/therapeutic use , Gram-Negative Bacteria/drug effects , Prospective Studies , India , Gram-Positive Bacteria/drug effects
12.
Carbohydr Polym ; 341: 122321, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876723

ABSTRACT

Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.


Subject(s)
Anti-Bacterial Agents , Biofilms , Starch , Tannins , Tensile Strength , Starch/chemistry , Tannins/chemistry , Tannins/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Polyphenols
13.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893450

ABSTRACT

Isoflavones are a class of natural products that exhibit a wide range of interesting biological properties, including antioxidant, hepatoprotective, antimicrobial, and anti-inflammatory activities. Scandenone (1), osajin (2), and 6,8-diprenylgenistein (3) are natural prenylated isoflavones that share the same polyphenol framework. In this research, the key intermediate 15 was used for the synthesis of the natural isoflavones 1-3, establishing a stereoselective synthetic method for both linear and angular pyran isoflavones. The antibacterial activities of 1-3 were also evaluated, and all of them displayed good antibacterial activity against Gram-positive bacteria. Among them, 2 was the most potent one against MRSA, with a MIC value of 2 µg/mL, and the SEM assay indicated that the bacterial cell membranes of both MRSA and E. faecalis could be disrupted by 2. These findings suggest that this type of isoflavone could serve as a lead for the development of novel antibacterial agents for the treatment of Gram-positive bacterial infections.


Subject(s)
Anti-Bacterial Agents , Isoflavones , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/chemical synthesis , Molecular Structure , Methicillin-Resistant Staphylococcus aureus/drug effects , Gram-Positive Bacteria/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Enterococcus faecalis/drug effects
14.
J Infect Public Health ; 17(7): 102467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850585

ABSTRACT

Pregnant women have a higher risk of urinary tract infections (UTIs) compared to non-pregnant women, making antibiotics necessary for treatment. However, prescribing antibiotics without culture and sensitivity tests may contribute to antimicrobial resistance. A meta-analysis using R was conducted to determine the prevalence of antibiotic resistance patterns in UTIs among pregnant women. We identified observational studies published in the last 10 years and used a random effects model to calculate the pooled prevalence. The prevalence of Gram-negative organisms causing UTIs in pregnant women was 67 %, while Gram-positive organisms were 22 %. The burden of Gram-positive organisms exhibiting antimicrobial resistance was very high at 95 %, primarily to ampicillin. The most common Gram-negative organisms exhibiting antimicrobial resistance were E. coli, Klebsiella, and Pseudomonas aeruginosa, while the most common Gram-positive organisms resistant to antibiotics were Staphylococcus aureus and coagulase-negative Staphylococcus. Sensitivity and culture testing are recommended for effective treatment in pregnant women with UTIs.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Observational Studies as Topic , Pregnancy Complications, Infectious , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/epidemiology , Female , Pregnancy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/epidemiology , Prevalence , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Microbial Sensitivity Tests , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
15.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844852

ABSTRACT

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Subject(s)
Bacteria , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Microbial Sensitivity Tests/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/drug effects , Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Fungi/drug effects , Fungi/isolation & purification , Blood Culture/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Time Factors , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Sepsis/microbiology , Sepsis/drug therapy , Sepsis/diagnosis
16.
Vet Med Sci ; 10(4): e1498, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896065

ABSTRACT

BACKGROUND: Bersama abyssinica Fresen is a plant that is used in folk medicine for the treatment of mastitis and other infectious diseases. OBIECTIVE: The antibacterial activity of methanol crude extract of plant was evaluated against three common bacterial pathogens, including Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa). METHODS: The antibacterial activities and minimum inhibitory concentration of B. abyssinica crude extracts were evaluated using agar-well diffusion and broth dilution methods according to the National Committee for Clinical Laboratory Standards (NCCLS). RESULTS: A significant difference in the antibacterial activity of crude extracts was observed among different levels of concentration against tested isolates. A higher mean inhibition zone diameter was recorded in E. coli (29.2 ± 1.5 mm), followed by S. aureus (27.8 ± 1.1 mm) and P. aeruginosa (18.0 ± 0.7 mm) at a concentration of 100 mg/mL. The antibacterial activity of crude plant extract at 100 mg/mL was comparable with that of a standard antibiotic (27.6 ± 2.6) against S. aureus and E. coli isolates. The findings indicated that bacterial growth inhibition increased as the concentration of the crude extracts increased. E. coli and S. aureus isolates showed significantly higher susceptibilities to crude extracts than P. aeruginosa at all concentrations. The minimum inhibitory concentrations of extracts against S. aureus, E. coli and P. aeruginosa isolates were 0.78 mg/mL, 1.56 mg/mL and 1.56 mg/mL, respectively. CONCLUSIONS: All tested pathogenic bacterial species were susceptible to plant leaf extract and broad-spectrum activity against Gram-positive and Gram-negative bacteria. The study recommends further fractionation of the B. abyssinica plant that contributes to its antibacterial activity and understands the mode of action of this plant against bacteria and other microbes.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Microbial Sensitivity Tests , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects
17.
Eur J Med Chem ; 274: 116544, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850855

ABSTRACT

Antibiotic resistance is becoming increasingly severe. The development of small molecular antimicrobial peptides is regarded as a promising design strategy for antibiotics. Here, a series of bisphenol derivatives with amphiphilic structures were designed and synthesized as antibacterial agents by imitating the design strategy of antimicrobial peptides. After a series of structural optimizations, lead compound 43 was identified, which exhibited excellent antibacterial activity against Gram-positive bacterial strains (MICs = 0.78-1.56 µg/mL), poor hemolytic activity (HC50 > 200 µg/mL), and low cytotoxicity (CC50 > 100 µg/mL). Further biological evaluation results indicated that 43 exerted antibacterial effects by directly destroying bacterial cell membranes and displayed rapid bactericidal properties (within 0.5-1 h), leading to a very low probability of drug resistance. Moreover, in a murine model of corneal infection, 43 exhibited a strong in vivo antibacterial efficacy. These findings indicate that 43 is a promising candidate compound for the treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents , Benzhydryl Compounds , Gram-Positive Bacteria , Microbial Sensitivity Tests , Phenols , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Phenols/pharmacology , Phenols/chemistry , Phenols/chemical synthesis , Animals , Gram-Positive Bacteria/drug effects , Mice , Structure-Activity Relationship , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/chemical synthesis , Molecular Structure , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Humans , Hemolysis/drug effects , Drug Development
18.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892325

ABSTRACT

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Subject(s)
Anti-Bacterial Agents , Esters , Microbial Sensitivity Tests , Rhodamines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rhodamines/chemistry , Rhodamines/pharmacology , Esters/chemistry , Esters/pharmacology , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Plastoquinone/chemistry , Gram-Positive Bacteria/drug effects , Escherichia coli/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Staphylococcus aureus/drug effects , Fluorescent Dyes/chemistry
19.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930924

ABSTRACT

A chemical and biological exploration of the European polypore Dentipellis fragilis afforded two previously undescribed natural products (1 and 2), together with three known derivatives (3-5). Chemical structures of the isolated compounds were confirmed through 1D/2D NMR spectroscopic analyses, mass spectrometry, and by comparison with the reported literature. The relative and absolute configurations of 1 were determined according to the ROESY spectrum and time-dependent density functional theory electronic circular dichroism (TDDFT-ECD), respectively. Furthermore, the absolute configuration of dentipellinol (3) was revisited and revealed to be of (R) configuration. All the isolated compounds were assessed for their cytotoxic and antimicrobial activities, with some being revealed to have weak to moderate antimicrobial activity, particularly against Gram-positive bacteria.


Subject(s)
Microbial Sensitivity Tests , Humans , Molecular Structure , Basidiomycota/chemistry , Magnetic Resonance Spectroscopy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Circular Dichroism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Gram-Positive Bacteria/drug effects , Cell Line, Tumor
20.
Curr Microbiol ; 81(7): 183, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771359

ABSTRACT

The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Monascus , Mycelium , Monascus/chemistry , Monascus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mycelium/chemistry , Mycelium/radiation effects , Mycelium/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/radiation effects , Complex Mixtures/pharmacology , Complex Mixtures/chemistry , Pigments, Biological/pharmacology , Photochemotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...