Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.056
Filter
1.
Environ Monit Assess ; 196(8): 692, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960989

ABSTRACT

Groundwater monitoring data can be prone to errors and biases due to various factors like borehole and equipment malfunctions, or human mistakes. These inaccuracies can jeopardize the groundwater system, leading to reduced efficiency and potentially causing partial or complete failures in the monitoring system. Traditional anomaly detection methods, which rely on statistical and time-variant techniques, struggle to handle the complex and dynamic nature of anomalies. With advancements in artificial intelligence and the growing need for effective anomaly detection and prevention across different sectors, artificial neural network methods are emerging as capable of identifying more intricate anomalies by considering both temporal and contextual aspects. Nonetheless, there is still a shortage of comprehensive studies on groundwater anomaly detection. The intricate patterns of sequential data from groundwater present numerous challenges, necessitating sophisticated modeling techniques that combine mathematics, statistics, and machine learning for viable solutions. This paper introduces a model designed for high accuracy and efficient computation in detecting anomalies in groundwater monitoring data through a probabilistic approach. We employed the Monte Carlo method and SEAWAT numerical simulation to ascertain the uncertainty in groundwater salinity. Subsequently, a Long Short-Term Memory (LSTM)-Autoencoder model was trained and evaluated, forming the basis of an anomaly detection framework. Each piece of training data was assessed by the LSTM-Autoencoder using the Negative Log Likelihood (NLL) score and a predefined threshold to determine the data's abnormality percentage. The accuracy evaluation of the proposed LSTM-Autoencoder algorithm revealed that this approach achieved commendable performance, with an accuracy of 98.47% in anomaly detection.


Subject(s)
Environmental Monitoring , Groundwater , Neural Networks, Computer , Groundwater/chemistry , Environmental Monitoring/methods , Monte Carlo Method , Salinity
2.
Environ Geochem Health ; 46(8): 280, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963449

ABSTRACT

The chlor-alkali industry (CAI) is crucial for global chemical production; however, its operation has led to widespread heavy metal (HM) contamination at numerous sites, which has not been thoroughly investigated. This study analysed 122 soil and groundwater samples from a typical CAI site in Kaifeng, China. Our aim was to assess the ecological and health risks, identify the sources, and examine the migration characteristics of HMs at this site using Monte Carlo simulation, absolute principal component score-multiple linear regression (APCS-MLR), and the potential environmental risk index (Ei). Our findings revealed that the exceedance rates for Cd, Pb, Hg, and Ni were 71.96%, 45.79%, 49.59%, and 65.42%, respectively. Mercury (Hg) displayed the greatest coefficient of variation across all the soil layers, indicating a significant anthropogenic influence. Cd and Hg were identified as having high and extremely high potential environmental risk levels, respectively. The spatial distributions of the improved Nemerow index (INI), total ecological risk (Ri), and HM content varied considerably, with the most contaminated areas typically associated with the storage of raw and auxiliary materials. Surface aggregation and significant vertical transport were noted for HMs; As and Ni showed substantial accumulation in subsoil layers, severely contaminating the groundwater. Self-organizing maps categorized the samples into two different groups, showing strong positive correlations between Cd, Pb, and Hg. The APCS-MLR model suggested that industrial emissions were the main contributors, accounting for 60.3% of the total HM input. Elevated hazard quotient values for Hg posed significant noncarcinogenic risks, whereas acceptable levels of carcinogenic risk were observed for both adults (96.60%) and children (97.83%). This study significantly enhances historical CAI pollution data and offers valuable insights into ongoing environmental and health challenges.


Subject(s)
Environmental Monitoring , Groundwater , Metals, Heavy , Soil Pollutants , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Groundwater/chemistry , Soil Pollutants/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Humans , Chemical Industry
3.
Environ Geochem Health ; 46(8): 274, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958770

ABSTRACT

Fluoride-enriched groundwater is a serious threat for groundwater supply around the world. The medium-low temperature fluoride-enriched geothermal groundwater resource is widely distributed in the circum-Wugongshan area. And the fluoride concentration of all geothermal samples exceeds the WHO permissible limit of 1.5 mg/L. The Self-Organizing Map method, hydrochemical and isotopic analysis are used to decipher the driving factors and genetic mechanism of fluoride-enriched geothermal groundwater. A total of 19 samples collected from the circum-Wugongshan geothermal belt are divided into four clusters by the self-organizing map. Cluster I, Cluster II, Cluster III, and Cluster IV represent the geothermal groundwater with the different degree of fluoride concentration pollution, the different hydrochemical type, and the physicochemical characteristic. The high F- concentration geothermal groundwater is characterized by HCO3-Na with alkalinity environment. The δD and δ18O values indicate that the geothermal groundwater origins from the atmospheric precipitation with the recharge elevation of 1000-2100 m. The dissolution of fluoride-bearing minerals is the main source of fluoride ions in geothermal water. Moreover, groundwater fluoride enrichment is also facilitated by water-rock interaction, cation exchange and alkaline environment. Additionally, the health risk assessment result reveals that the fluorine-enriched geothermal groundwater in the western part of Wugongshan area poses a more serious threat to human health than that of eastern part. The fluoride health risks of geothermal groundwater for different group show differentiation, 100% for children, 94.74% for adult females, and 68.42% for adult males, respectively. Compared with adult females and adult males, children faced the greatest health risks. The results of this study provide scientific evaluation for the utilization of geothermal groundwater and the protection of human health around the Wugongshan area.


Subject(s)
Fluorides , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/analysis , China , Humans , Risk Assessment , Water Pollutants, Chemical/analysis , Female , Male , Child , Environmental Monitoring , Adult , Child, Preschool , Adolescent , Young Adult , Infant , Cold Temperature , Hot Springs/chemistry
4.
Environ Monit Assess ; 196(8): 688, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958799

ABSTRACT

Rivers are vital and complex natural systems that provide a wide range of ecosystem services. This study presents a methodology for assessing the riverine provisioning and supporting ecosystem services, whose applicability has been demonstrated over the Budhabalanga River Basin of India. The Soil and Water Assessment Tool (SWAT) is used to generate streamflow time series at various ungauged sites, and then the streamflow is characterized for the evaluation of provisioning services. Further, the diversity and abundance of macroinvertebrates, along with the Lotic-invertebrate Index for Flow Evaluation (LIFE), is used to study the riverine supporting ecosystem services. The streams show intermittent behavior and strong seasonality for low flows, which limits the water availability, particularly during pre-monsoon season. The Baseflow Index (BFI) is greater than 0.6, indicating that groundwater contributes more than 60% of the total streamflow. Interestingly, despite the high BFI, the streams did not conform to the prevailing opinion that a greater baseflow contribution results in a later commencement of the low-flow period in the hydrological year. Furthermore, the study depicts significant variations in the diversity and abundance of the macroinvertebrates across the various sampling sites. However, the LIFE score across the sites remained consistent within a narrow range, i.e., 8 to 9, suggesting a steady supply of supporting ecosystem services. The results of the study can help the policymakers towards an informed decision making and the simplistic methodology proposed in this study can be replicated in other river basins for identifying vulnerable watersheds and prioritizing management actions.


Subject(s)
Ecosystem , Environmental Monitoring , Hydrology , Rivers , India , Environmental Monitoring/methods , Animals , Invertebrates , Conservation of Natural Resources/methods , Biodiversity , Groundwater
5.
Water Environ Res ; 96(7): e11062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982838

ABSTRACT

Karst groundwater, which is one of most important drinking water sources, is vulnerable to be polluted as its closed hydraulic relation with surface water. Thus, it is very important to identify the groundwater source to control groundwater pollution. The Pearson correlation coefficient among major ions (Na + K+, Ca2+, Mg2+, HCO3 -, SO4 2-, and Cl-) was employed to deduce the groundwater types in Zhong Liang Mountain, Southwest China. Then, the combined method of principal component analysis and cluster analysis were employed to identify the groundwater sources in a typical karst region of southwest China. The results shown that (1) the high positive correlation between cations and anions indicated the water-rock reaction of Ca-HCO3, Ca-SO4, (Na + K)-Cl, and Mg-SO4. (2) The major two principal components that would represent water-rock reaction of CaSO4 and Ca-HCO3 would, respectively, explain 60.41% and 31.80% of groundwater information. (3) Based on the two principal components, 33 groundwater samples were clustered into eight groups through hierarchical clustering, each group has similar water-rock reaction. The findings would be employed to forecast the surge water, that was an important work for tunnel construction and operation. PRACTITIONER POINTS: The components of groundwater was highly correlated with water-rock reaction. The principal component analysis screens the types of groundwater. The cluster analysis identifies the groundwater sources.


Subject(s)
Groundwater , China , Groundwater/chemistry , Environmental Monitoring , Cluster Analysis , Water Pollutants, Chemical/analysis , Principal Component Analysis , Geological Phenomena
6.
Sci Rep ; 14(1): 15904, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987533

ABSTRACT

The present work's objective is to give a comprehensive overview of the quality of groundwater in Qatar in terms of heavy metals content as well as investigating the cause and effect of the elevation in their levels above the WHO/US-EPA standards. The scope of the study included (1) physical and chemical analysis of 82 groundwater samples collected from various locations around Qatar, (2) development of ArcGIS maps depicting the variations in the levels, (3) assessment of the human health risks associated with the existing levels using three of the most used models which are: Hazard index (HI), Nemerow comprehensive pollution index (NCPI) and Incremental Lifetime Cancer Risk (ILCR). There is no extensive study ever reported to assess the health risks linked with the consumption of groundwater characterized with such heavy metals levels in Qatar. The chronic daily intake (CDI) of the investigated heavy metals (Ag, Mn, Cr, V, Mo and Sr) through ingestion and dermal pathways had a range of 1.4 × 10-5-6.7 × 10-1 mg/kg/day while the NCPI's range was reported at 0-4.39. Moreover, the HI and ILCR were found to have a range of 0-3.2 and 5.6 × 10-4-5.5 × 10-2, respectively. The assessment of health risks, conducted in the present work, could be beneficial in building the baseline of heavy metals levels in groundwater in Qatar. This will also help in the determination of any future contamination of groundwater.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Qatar , Metals, Heavy/analysis , Groundwater/analysis , Groundwater/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring/methods
7.
Sci Rep ; 14(1): 15881, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987576

ABSTRACT

Populations consuming saline drinking water are at greater risk of high blood pressure and potentially other adverse health outcomes. We modelled data and used available datasets to identify countries of higher vulnerability to future saltwater intrusion associated with climate change in 2050 under Representative Concentration Pathways (RCP)4.5 and RCP8.5. We developed three vulnerability criteria to capture geographies with: (1) any coastal areas with projected inland saltwater intrusion of ≥ 1 km inland, (2) > 50% of the population in coastal secondary administrative areas with reliance on groundwater for drinking water, and 3) high national average sodium urinary excretion (i.e., > 3 g/day). We identified 41 nations across all continents (except Antarctica) with ≥ 1 km of inland saltwater intrusion by 2050. Seven low- and middle-income countries of higher vulnerability were all concentrated in South/Southeast Asia. Based on these initial findings, future research should study geological nuances at the local level in higher-risk areas and co-produce with local communities contextually appropriate solutions to secure equitable access to clean drinking water.


Subject(s)
Climate Change , Drinking Water , Humans , Drinking Water/analysis , Groundwater/analysis , Water Supply , Hypertension/epidemiology
8.
Environ Geochem Health ; 46(8): 268, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954115

ABSTRACT

This study employed the groundwater pollution index to assess the appropriateness of groundwater for human consumption. Additionally, the hazard index was utilized to evaluate the potential non-carcinogenic risks associated with fluoride and nitrate exposure among children, women, and men in the study region. A total of 103 samples were collected from the Aurangabad district of Bihar. The analyzed samples were assessed using several physicochemical parameters. Major cations in the groundwater are Ca2+ > Mg2+ and major anions are HCO3- > Cl- > SO42- > NO3- > F- > PO43-. Around 17% of the collected groundwater samples surpassed the allowable BIS concentration limits for Nitrate, while approximately 11% surpassed the allowed limits for fluoride concentration. Principal component analysis was utilized for its efficacy and efficiency in the analytical procedure. Four principal components were recovered that explained 69.06% of the total variance. The Hazard Quotient (HQ) of nitrate varies between 0.03-1.74, 0.02-1.47, and 0.03-1.99 for females, males, and children, respectively. The HQ of fluoride varies between 0.04-1.59, 0.04-1.34, and 0.05-1.82 for females, males, and children, respectively. The central part of the district was at high risk according to the spatial distribution maps of the total hazard index (THI). Noncarcinogenic risks due to THI are 47%, 37%, and 28% for children, females, and males, respectively. According to the human health risk assessment, children are more prone to getting affected by polluted water than adults. The groundwater pollution index (GPI) value ranges from 0.46 to 2.27 in the study area. Seventy-five percent of the samples fell under minor pollution and only one fell under high pollution. The spatial distribution of GPI in the research area shows that the central region is highly affected, which means that this water is unsuitable for drinking purposes.


Subject(s)
Fluorides , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/analysis , Humans , Nitrates/analysis , Water Pollutants, Chemical/analysis , Female , Risk Assessment , Male , Child , India , Geographic Information Systems , Principal Component Analysis , Environmental Monitoring/methods , Adult
9.
Sci Rep ; 14(1): 15380, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965268

ABSTRACT

Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.


Subject(s)
Anti-Bacterial Agents , Groundwater , Salmonella , Morocco , Salmonella/drug effects , Salmonella/isolation & purification , Anti-Bacterial Agents/pharmacology , Groundwater/microbiology , Humans , Water Microbiology , Microbial Sensitivity Tests , Incidence , Water Wells , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial
10.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965745

ABSTRACT

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Subject(s)
Aluminum , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/analysis , Aluminum/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Rivers/chemistry , China , Urbanization
11.
Environ Geochem Health ; 46(8): 292, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976118

ABSTRACT

Groundwater, as an essential resource, holds significant importance for human production and livelihoods. With the deterioration of the water environment, the issue of groundwater quality has become an urgent international concern. This study focused on the Fenghuang Mountain Area (FMA) and collected a total of 41 sets of samples including pore groundwater (PGW), fissure groundwater (FGW), karst groundwater (KGW), and river water (RW). Hydrochemical analysis methods were employed to identify the hydrochemical characteristics and controlling factors. The entropy-weighted water quality index (EWQI) and health risk assessment model were utilized to assess the groundwater quality and nitrate health risk, respectively. The results indicated that the dominant anion and cation in both groundwater and surface water in the FMA were HCO3- and Ca2+, respectively, with the main hydrochemical type being HCO3-Ca. Groundwater and surface water in the FMA were primarily controlled by rock weathering process, with ion concentrations influenced mainly by the dissolution of halite, sylvite, carbonates (calcite and dolomite), silicates, and gypsum, as well as by reverse anion exchange process. PGW was significantly affected by agricultural activities, with NO3- concentration closely related to human activities. The water quality of FGW was relatively good, with Class I and Class II water accounting for the highest proportion, reaching 84.62%. The high-value area of EWQI in PGW was influenced by human activities. The impact of nitrate health risk on children was significantly greater than on adults, with FGW having the lowest health risk and PGW having the highest health risk. The research results can provide important guarantees for the rational development and utilization of water resources in the FMA and the sustainable development of the economy in Northeast China.


Subject(s)
Environmental Monitoring , Groundwater , Nitrates , Water Pollutants, Chemical , Water Quality , China , Risk Assessment , Groundwater/chemistry , Humans , Nitrates/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Child , Adult , Rivers/chemistry
12.
J Environ Sci (China) ; 146: 67-80, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969463

ABSTRACT

Groundwater is the main source of drinking water for the rural population in the chronic kidney disease of unknown etiology (CKDu) zone of the North Central Province (NCP) in Sri Lanka. In this study, a total of 334 groundwater samples (311 dug wells, 21 tube wells and 2 springs) during the wet season from two aquifers in the NCP were collected, and investigated their chemical characteristics and evaluate their water quality, including groundwater chemistry, main ion sources, the corrosion and scaling potential of groundwater. The results showed that the two hydrochemical types of groundwater in the NCP were mainly of the Ca-HCO3, Na·Ca-HCO3 types, with the main HCO3-, Na+ and Ca2+ ions in both types of groundwater originating from silicate and evaporite salt dissolution and influenced by alternating cation adsorption, while the presence of NO3- was mainly anthropogenic. Evaluation of water stability using namely Langelier saturation index (LSI), Ryznar stability index (RSI), Puckorius scaling index (PSI) and Larson-Skold index (LS), indicated that most groundwater presents corrosion potential and has corrosion behavior tendency of metals to some degrees. The water quality of Polonnaruwa was better than that of Anuradhapura in the NCP, and when the groundwater was worse than the "good" grade, which must be properly treated before it is used as drinking water.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Sri Lanka , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Quality , Renal Insufficiency, Chronic , Drinking Water/chemistry , Drinking Water/analysis , Water Supply
13.
Environ Monit Assess ; 196(8): 723, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987411

ABSTRACT

A comprehensive seasonal assessment of groundwater vulnerability was conducted in the weathered hard rock aquifer of the upper Swarnrekha watershed in Ranchi district, India. Lineament density (Ld) and land use/land cover (LULC) were integrated into the conventional DRASTIC and Pesticide DRASTIC (P-DRASTIC) models and were extensively compared with six modified models, viz. DRASTIC-Ld, DRASTIC-Lu, DRASTIC-LdLu, P-DRASTIC-Ld, P-DRASTIC-Lu, and P-DRASTIC-LdLu, to identify the most optimal model for vulnerability mapping in hard rock terrain of the region. Findings were geochemically validated using NO3- concentrations of 68 wells during pre-monsoon (Pre-M) and post-monsoon (Post-M) 2022. Irrespective of the applied model, groundwater vulnerability shows significant seasonal variation, with > 45% of the region classified as high to very high vulnerability in the pre-M, increasing to Ì´67% in post-M season, highlighting the importance of seasonal vulnerability assessments. Agriculture and industries' dominant southern region showed higher vulnerability, followed by regions with high Ld and thin weathered zone. Incorporating Ld and LULC parameters into DRASTIC-LdLu and P-DRASTIC-LdLu models increases the 'Very High' vulnerability zones to 17.4% and 17.6% for pre-M and 29.4% and 27.9% for post-M, respectively. Similarly, 'High' vulnerable zones increase from 32.5% and 25% in pre-M to 33.8% and 35.3% in post-M for respective models. Model output comparisons suggest that modified DRASTIC-LdLu and P-DRASTIC-LdLu perform better, with accurate estimations of 83.8% and 89.7% for pre-M and post-M, respectively. However, results of geochemical validation suggest that among all the applied modified models, DRASTIC-LdLu performs best, with accurate estimations of 34.4% and 20.6% for pre-M and post-M, respectively.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Environmental Monitoring/methods , India , Water Pollutants, Chemical/analysis , Agriculture , Seasons , Water Pollution, Chemical/statistics & numerical data
14.
Environ Monit Assess ; 196(8): 724, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990407

ABSTRACT

Analysis of the change in groundwater used as a drinking and irrigation water source is of critical importance in terms of monitoring aquifers, planning water resources, energy production, combating climate change, and agricultural production. Therefore, it is necessary to model groundwater level (GWL) fluctuations to monitor and predict groundwater storage. Artificial intelligence-based models in water resource management have become prevalent due to their proven success in hydrological studies. This study proposed a hybrid model that combines the artificial neural network (ANN) and the artificial bee colony optimization (ABC) algorithm, along with the ensemble empirical mode decomposition (EEMD) and the local mean decomposition (LMD) techniques, to model groundwater levels in Erzurum province, Türkiye. GWL estimation results were evaluated with mean square error (MSE), coefficient of determination (R2), and residual sum of squares (RSS) and visually with violin, scatter, and time series plot. The study results indicated that the EEMD-ABC-ANN hybrid model was superior to other models in estimating GWL, with R2 values ranging from 0.91 to 0.99 and MSE values ranging from 0.004 to 0.07. It has also been revealed that promising GWL predictions can be made with previous GWL data.


Subject(s)
Environmental Monitoring , Groundwater , Neural Networks, Computer , Groundwater/chemistry , Bees , Animals , Environmental Monitoring/methods , Algorithms
15.
Environ Sci Pollut Res Int ; 31(27): 39794-39822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833051

ABSTRACT

Groundwater resources worldwide face significant challenges that require urgent implementation of sustainable measures for effective long-term management. Managed aquifer recharge (MAR) is regarded as one of the most promising management technologies to address the degradation of groundwater resources. However, in urban aquifers, locating suitable areas that are least vulnerable to contamination for MAR implementation is complex and challenging. Hence, the present study proposes a framework encapsulating the combined assessment of groundwater vulnerability and MAR site suitability analysis to pinpoint the most featured areas for installing drywells in Kayseri, Turkey. To extrapolate the vulnerable zones, not only the original DRASTIC but also its multi-criteria decision-making (MCDA)-based modified variants were evaluated with regard to different hydrochemical parameters using the area under the receiver operating characteristic (ROC) curve (AUC). Besides, the fuzzy analytical hierarchy process (FAHP) rationale was adopted to signify the importance level of criteria and the robustness of the framework was highlighted with sensitivity analysis. In addition, the decision layers and the attained vulnerability layer were combined using the weighted overlay (WOA). The findings indicate that the DRASTIC-SWARA correlates well with the arsenic (AUC = 0.856) and chloride (AUC = 0.648) and was adopted as the vulnerability model. Groundwater quality parameters such as chloride and sodium adsorption ratio, as well as the vadose zone thickness, were found to be the most significant decision parameters with importance levels of 16.75%, 14.51%, and 15.73%, respectively. Overall, 28.24% of the study area was unsuitable for recharge activities with high to very high vulnerability, while the remaining part was further prioritized into low to high suitability classes for MAR application. The proposed framework offers valuable tool to decision-makers for the delineation of favorable MAR sites with minimized susceptibility to contamination.


Subject(s)
Decision Making , Geographic Information Systems , Groundwater , Groundwater/chemistry , Turkey , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
16.
Environ Sci Technol ; 58(24): 10752-10763, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848107

ABSTRACT

Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.


Subject(s)
Polymers , Sulfides , Sulfides/chemistry , Polymers/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Propane/analogs & derivatives
17.
Chemosphere ; 361: 142567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851512

ABSTRACT

To determine contamination sources and pathways, the use of multiple isotopes, including metal isotopes, can increase the reliability of environmental forensic techniques. This study differentiated contamination sources in groundwater of a mine area and elucidated geochemical processes using Cu, Zn, S-O, and O-H isotopes. Sulfate reduction and sulfide precipitation were elucidated using concentrations of dissolved sulfides, δ34SSO4, δ18OSO4, and δ66Zn. The overlying contaminated soil was possibly responsible for the contamination of groundwater at <5 mbgl, which was suggested by low δ65Cu values (0.419-1.120‰) reflecting those of soil (0.279-1.115‰). The existence of dissolved Cu as Cu(I) may prevent the increase in δ65Cu during leaching of contaminated soil in the sulfate-reducing environment. In contrast, the groundwater at >5 mbgl seemed to be highly affected by the contamination plume from the adit water, which was suggested by high SO42- concentrations (407-447 mg L-1) and δ65Cu (0.252-2.275‰) and δ66Zn (-0.105‰-0.362‰) values at a multilevel sampler approaching those of the adit seepages. Additionally, the O-H isotopic ratios were distinguished between <5 mbgl and >5 mbgl. Using δ65Cu and δ66Zn to support the determination of groundwater contamination sources may be encouraged, particularly where the isotopic signatures are distinct for each source.


Subject(s)
Copper , Environmental Monitoring , Groundwater , Mining , Water Pollutants, Chemical , Zinc , Groundwater/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Copper/analysis , Zinc/analysis , Soil/chemistry , Isotopes/analysis , Zinc Isotopes/analysis , Oxygen Isotopes/analysis , Soil Pollutants/analysis
18.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837029

ABSTRACT

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Subject(s)
Agriculture , Boron , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Saudi Arabia , Water Pollutants, Chemical/analysis , Boron/analysis , Metals/analysis , Trace Elements/analysis
19.
Sci Total Environ ; 943: 173732, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851348

ABSTRACT

BACKGROUND AND OBJECTIVES: Groundwater contamination poses a significant health challenge in India, particularly impacting children. Despite its importance, limited research has explored the nexus between groundwater quality and child nutrition outcomes. This study addresses this gap, examining the association between groundwater quality and child undernutrition, offering pertinent insights for policymakers. DATA AND METHODS: The study uses data from the fifth round of the National Family Health Survey (NFHS) and the Central Groundwater Board (CGWB) to analyze the association between groundwater quality and child nutritional status. The groundwater quality data were collected by nationwide monitoring stations programmed by CGWB, and the child undernutrition data were obtained from the NFHS-5, 2019-21. The analysis included descriptive and logistic regression model. The study also considers various demographic and socio-economic factors as potential moderators of the relationship between groundwater quality and child undernutrition. FINDINGS: Significant variation in groundwater quality was observed across India, with numerous regions displaying poor performance. Approximately 26.53 % of geographical areas were deemed unfit for consuming groundwater. Environmental factors such as high temperatures, low precipitation, and arid, alluvial, laterite-type soils are linked to poorer groundwater quality. Unfit-for-consumption groundwater quality increased the odds of undernutrition, revealing a 35 %, 38 %, and 11 % higher likelihood of stunting, underweight, and wasting in children, with higher pH, Magnesium, Sulphate, Nitrate, Total Dissolved Solids, and Arsenic, levels associated with increased odds of stunting, underweight, and wasting. Higher temperatures (>25 °C), high elevations (>1000 m), and proximity to cultivated or industrial areas all contribute to heightened risks of child undernutrition. Children consuming groundwater, lacking access to improved toilets, or living in rural areas are more likely to be undernourished, while females, higher-income households, and those consuming dairy, vegetables, and fruits daily exhibit lower odds of undernutrition. POLICY IMPLICATIONS: Policy implications highlight the urgent need for investment in piped water supply systems. Additionally, focused efforts are required to monitor and improve groundwater quality in regions with poor water quality. Policies should emphasize safe sanitation practices and enhance public awareness about the critical role of safe drinking water in improving child health.


Subject(s)
Groundwater , Water Quality , Environmental Monitoring , Groundwater/chemistry , India/epidemiology , Malnutrition/epidemiology , Water Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Hydrogen-Ion Concentration , Environmental Policy , Health Policy , Arsenic/analysis , Humans , Child , Sulfates/analysis , Magnesium , Chlorides
20.
Environ Sci Technol ; 58(24): 10644-10651, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38832916

ABSTRACT

Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.


Subject(s)
Biofilms , Nitrates , Palladium , Perchlorates , Palladium/chemistry , Nitrates/metabolism , Perchlorates/metabolism , Oxidation-Reduction , Electrons , Groundwater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...