Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.154
1.
Andes Pediatr ; 95(2): 151-158, 2024 Apr.
Article Es | MEDLINE | ID: mdl-38801362

Growth hormone (GH) is effective in improving height in several conditions. OBJECTIVE: To describe the evolution of a group of children who received GH in a tertiary center between 2012-2022. PATIENTS AND METHOD: Descriptive, retrospective study. We analyzed the impact on height after GH use with Z-score according to etiology, age at onset and bone age. Patients under 15 years old at baseline and receiving GH for at least 12 months, with diagnoses of GH deficiency (GHD), idiopathic short stature (ISS), small for gestational age (SGA), SHOX Haploinsufficiency (SHOX) and Turner syndrome (TS) were included. Height was expressed as Z-score for age and sex, according to NCHS curves. RESULTS: 145 children received GH. Sixty patients were excluded due to irregular administration, incomplete data, less than 12 months of GH, change of hospital, and associated comorbidities. Seventy-three patients were analyzed, 23 GHD, 15 ISS, 20 SGA, 9 SHOX and 6 TS patients. Significant improvement in height (Z-score for age and sex) was observed in SGA (1.4 ± 0.8 gain; p < 0.001), GHD (1.1 ± 1.0; p < 0.001), ISS (1.1 ± 0.8; p < 0.001) and SHOX (0.8 ± 0.7; p = 0.007) patients. In TS, a non-statistically significant improvement was observed (0.7 ± 0.8; p = 0.085). In GHD, onset before 3 years showed a gain of 1.9 ± 1.1, vs 0.7 ± 0.6 (p = 0.083) and in ISS onset with bone age less than 9 years increased it by 1.7 ± 0.5 vs 0.5 ± 0.5 (p < 0.001). ADVERSE EVENTS: 27/73 (37%) headache, 18/73 (24%) lower extremity pain, 1/73 (1.5%) dizziness, 1/73 (1.5%) scoliosis, 1/73 (1.5%) epiphysiolysis and 1/73 (1.5%) craniopharyngioma recurrence. CONCLUSIONS: Children with GHD, ISS, SHOX mutation and SGA significantly improved their height, highlighting in GHD and ISS the importance of early treatment. Treatment was well tolerated in the 5 groups analyzed.


Body Height , Growth Disorders , Human Growth Hormone , Infant, Small for Gestational Age , Mutation , Short Stature Homeobox Protein , Turner Syndrome , Humans , Short Stature Homeobox Protein/genetics , Turner Syndrome/drug therapy , Turner Syndrome/genetics , Female , Retrospective Studies , Male , Child , Human Growth Hormone/therapeutic use , Growth Disorders/genetics , Growth Disorders/drug therapy , Child, Preschool , Adolescent , Treatment Outcome , Infant , Haploinsufficiency
3.
JCI Insight ; 9(6)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38516887

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.


HMGA2 Protein , Silver-Russell Syndrome , Animals , Humans , Mice , Base Sequence , Growth Disorders/genetics , HMGA2 Protein/genetics , Phenotype , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/diagnosis
4.
Eur J Med Genet ; 68: 104929, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423276

GAPO syndrome is a rare genetic condition caused by bi-allelic variants in ANTXR1 gene & is an abbreviation for its core features - growth retardation, alopecia, pseudo-anodontia & optic atrophy. Certain additional features involving various other systems have been reported over the years & contribute to the expanding spectrum of this evolving phenotype. We report GAPO syndrome in a 3.75 year old Indian female child, who presented with some unique features such as sagittal craniosynostosis with scaphocephaly & bilateral choroid plexus cysts, alongside the core phenotype. We also report a novel frameshift variant in our patient & offer first evidence for the prenatal onset of some features.


Anodontia , Optic Atrophies, Hereditary , Child, Preschool , Female , Humans , Pregnancy , Alopecia , Growth Disorders/genetics , Microfilament Proteins , Phenotype , Rare Diseases , Receptors, Cell Surface
5.
Front Endocrinol (Lausanne) ; 15: 1327378, 2024.
Article En | MEDLINE | ID: mdl-38370361

Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.


Chromatin , Epigenesis, Genetic , Humans , DNA Methylation , DNA , Growth Disorders/genetics
6.
BMJ Paediatr Open ; 8(Suppl 1)2024 02 27.
Article En | MEDLINE | ID: mdl-38417921

INTRODUCTION: In 2020, an estimated 150 million children under the age of 5 years were stunted. Stunting results from early-life adversity and it is associated with significant physical and cognitive deficit, lifelong socioeconomic disadvantage and reduced life expectancy. There is a need to understand the causes of stunting and its effects in order to develop strategies to avoid it and to mitigate the consequences once stunting has occurred. Epigenetics is an important mechanism through which early-life factors are thought to influence biological function, with long-term consequences. We describe a series of epigenetic studies designed to understand how early-life adversity results in stunting and to inform the development of practical tools such as predictive markers and therapeutic targets. This work is part of the UKRI GCRF Action Against Stunting Hub. METHODS AND ANALYSIS: The project-in India, Indonesia and Senegal-comprises an observational study of mothers, fathers, and offspring (n=500) spanning the first 1000 days of life, and an intervention study in each country. Epigenetic status (DNA methylation) is determined in saliva from babies collected within 1 month of birth and again at 18 months of age, and from mothers and fathers around the time of birth. Epigenome-wide analysis is carried out using the Illumina EPIC array, augmented by high-definition sequencing approaches. Statistical analysis is carried out at the level of candidate genes/regions, higher dimensional epigenetic states and epigenome-wide association. Data analysis focuses on the determinants of stunting, the effectiveness of interventions, population comparisons and the link between epigenetics and other thematic areas, which include anthropometry, microbiome, gut health, parasitology, cognition, nutrition, food hygiene and water sanitation, food systems and the home environment. ETHICS AND DISSEMINATION: This study has been approved by the relevant Ethics Committees in Indonesia, India and Senegal, and the UK. Research data will be published and posted in public repositories.


Growth Disorders , Mothers , Infant , Child , Female , Humans , Child, Preschool , Indonesia/epidemiology , Senegal , Growth Disorders/epidemiology , Growth Disorders/genetics , Growth Disorders/prevention & control , Nutritional Status , Observational Studies as Topic
7.
Clin Chim Acta ; 554: 117779, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38220134

BACKGROUND: Significant differences have been observed in the efficacy of recombinant human growth hormone (rhGH) treatment for short children. The present study aimed to identify the genetic etiology of short stature and to assess the role of molecular diagnosis in predicting responses to rhGH treatment. METHODS: A total of 407 short children were included in the present study, 226 of whom received rhGH treatment. Whole-exome sequencing (WES) was conducted on short children to identify the underlying genetic etiology. Correlations between molecular diagnosis and the efficacy of rhGH treatment were examined. RESULTS: Pathogenic or likely pathogenic mutations were identified in 86 of the 407 patients (21.1%), including 36 (41.9%) novel variants. Among the multiple pathways affecting short stature, genes involved in fundamental cellular processes (38.7%) play a larger role, especially the RAS-MAPK pathway. In general, patients without pathogenic mutations responded better to rhGH than those with mutations. Furthermore, patients with hormone signaling pathway mutations had a better response to rhGH, while those with paracrine factor mutations had a worse response to rhGH. CONCLUSIONS: This study highlights the utility of WES in identifying genetic etiology in children with short stature. Identifying likely causal mutations is an important factor in predicting rhGH response.


Dwarfism , Human Growth Hormone , Child , Humans , Human Growth Hormone/genetics , Human Growth Hormone/therapeutic use , Growth Hormone , Growth Disorders/diagnosis , Growth Disorders/drug therapy , Growth Disorders/genetics , Recombinant Proteins , Body Height/genetics
8.
J Med Genet ; 61(6): 590-594, 2024 May 21.
Article En | MEDLINE | ID: mdl-38228391

Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.


Beckwith-Wiedemann Syndrome , Exome Sequencing , Humans , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Beckwith-Wiedemann Syndrome/diagnosis , Male , Female , Infant , Child, Preschool , Child , Phenotype , Growth Disorders/genetics , Growth Disorders/pathology , Genetic Variation , Mutation/genetics
9.
Horm Res Paediatr ; 97(1): 40-52, 2024.
Article En | MEDLINE | ID: mdl-37019085

INTRODUCTION: Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS: Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS: The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS: The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.


Dwarfism , Human Growth Hormone , Silver-Russell Syndrome , Child , Infant, Newborn , Humans , Insulin-Like Growth Factor I , Growth Disorders/genetics , Growth Disorders/diagnosis , Silver-Russell Syndrome/genetics , Gestational Age , Infant, Small for Gestational Age , Human Growth Hormone/genetics , Body Height/genetics , Short Stature Homeobox Protein
10.
Eur J Med Genet ; 67: 104894, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070826

Short stature or shortening of the limbs can be the result of a variety of genetic variants. Achondroplasia is the most common cause of disproportionate short stature and is caused by pathogenic variants in the fibroblast growth factor receptor 3 gene (FGFR3). Short stature homeobox (SHOX) deficiency is caused by loss or defects of the SHOX gene or its enhancer region. It is associated with a spectrum of phenotypes ranging from normal stature to Léri-Weill dyschondrosteosis characterized by mesomelia and short stature or the more severe Langer mesomelic dysplasia in case of biallelic SHOX deficiency. Little is known about the interactions and phenotypic consequences of achondroplasia in combination with SHOX deficiency, as the literature on this subject is scarce, and no genetically confirmed clinical reports exist. We present the clinical findings in an infant girl with concurrent achondroplasia and SHOX deficiency. We conclude that the clinical findings in infancy are phenotypically compatible with achondroplasia, with no features of the SHOX deficiency evident. This may change over time, as some features of SHOX deficiency only become evident later in life.


Achondroplasia , Osteochondrodysplasias , Female , Humans , Infant , Achondroplasia/genetics , Denmark , Gene Deletion , Genes, Homeobox , Growth Disorders/genetics , Homeodomain Proteins/genetics , Osteochondrodysplasias/genetics , Short Stature Homeobox Protein/genetics
11.
J Clin Res Pediatr Endocrinol ; 16(1): 41-49, 2024 03 11.
Article En | MEDLINE | ID: mdl-37750395

Objective: Short stature homeobox (SHOX) haploinsufficiency underlies idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis. The worldwide prevalence of SHOX variations in ISS varies from 2.5% to 15.0%. The aim of this study was to assess the implication of SHOX variation in ISS in North Indians and compare this with other cases of SHOX variations from Asian population. Methods: SHOX gene analysis was carried out by multiplex ligation-dependent probe amplification followed by Sanger sequencing in 54 patients with variable phenotypes. Comparison with other reports in a meta-analysis comprising the current study and 11 previous studies (n=979) was performed. Results: SHOX analysis resulted in 12.9% positivity (7.4% deletions and 5.5% duplications). SHOX association was seen significantly related to gender, with predominance in females (p=0.047). Short arms and forearms were the only significantly associated trait seen in 51.9% of children. The overall prevalence of SHOX variation was 15.2% in Asians with ISS. No significant difference was found in geographical region-specific analysis. Conclusion: This study summarises findings from the last decade and provides an updated picture of the prevalence of SHOX variations in Asians, emphasizing their potential as therapeutic targets in ISS patients. Further high quality, large investigations including functional validation is warranted to validate this association.


Dwarfism , Osteochondrodysplasias , Child , Female , Humans , Genes, Homeobox , Homeodomain Proteins/genetics , Short Stature Homeobox Protein/genetics , Dwarfism/epidemiology , Dwarfism/genetics , Growth Disorders/epidemiology , Growth Disorders/genetics , India/epidemiology , Osteochondrodysplasias/genetics
12.
Ophthalmic Genet ; 45(2): 207-209, 2024 Apr.
Article En | MEDLINE | ID: mdl-37722826

BACKGROUND: We present a case of a child with Floating-Harbor Syndrome (FHS) with bilateral chorioretinal coloboma (CC). To the best of our knowledge, this is the first case report of this association. Floating- Harbor syndrome is an extremely rare autosomal dominant genetic disorder with approximately 100 cases reported. It is characterized by a series of atypical features that include short stature with delayed bone age, low birth weight, skeletal anomalies, delayed speech development, and dysmorphic facial characteristics that typically portray a triangular face, deep-set eyes, long eyelashes, and prominent nose. MATERIALS AND METHODS: Our patient was examined by a pediatric ophthalmologist for the time at age of 7. Visual acuity, optical coherence tomography (OCT) and Optos imaging were collected on every visit. The patient had whole genome sequencing ordered by a pediatric geneticist to confirm Floating-Harbor syndrome. RESULTS: We present the patient's OCT and Optos images that illustrate the location of the patient's inferior chorioretinal coloboma in both eyes. The whole genome sequencing report collected revealed a heterozygous de novo pathogenic variant in the SRCAP gene, consistent with a Floating-Harbor syndrome diagnosis in the literature. DISCUSSION: Both genetic and systemic findings are consistent with the diagnosis of Floating-Harbor syndrome in our patient. Rubenstein-Taybi and Floating-Harbor syndrome share a similarity in molecular and physical manifestations, but because of the prevalence in Rubenstein-Taybi diagnoses, it is a syndromic condition that includes coloboma and frequently associated with each other. Therefore, a retinal exam should become part of the standard protocol for those with FHS, as proper diagnosis, examination and treatment can prevent irreversible retinal damage.


Abnormalities, Multiple , Coloboma , Craniofacial Abnormalities , Heart Septal Defects, Ventricular , Humans , Child , Coloboma/diagnosis , Coloboma/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics
13.
J Pediatr ; 265: 113841, 2024 Feb.
Article En | MEDLINE | ID: mdl-37995928

OBJECTIVE: To evaluate the presence of multiple genetic diagnoses in syndromic growth disorders. STUDY DESIGN: We carried out a cross-sectional study to evaluate 115 patients with syndromic tall (n = 24) or short stature (n = 91) of unknown cause from a tertiary referral center for growth disorders. Exome sequencing was performed to assess germline single nucleotide, InDel, and copy number variants. All variants were classified according to ACMG/AMP guidelines. The main outcome measured was the frequency of multiple genetic diagnoses in a cohort of children with syndromic growth disorders. RESULTS: The total diagnostic yield of the cohort was 54.8% (63/115). Six patients had multiple genetic diagnoses (tall stature group = 2; short stature group = 4). The proportion of multiple diagnoses within total cases was 5.2% (6/115), and within solved cases was 9.5% (6/63). No characteristics were significantly more frequent when compared with patients with single or multiple genetic findings. Among patients with multiple diagnoses, 3 had syndromes with overlapping clinical features, and the others had syndromes with distinct phenotypes. CONCLUSION: Recognition of multiple genetic diagnoses as a possibility in complex cases of syndromic growth disorders opens a new perspective on treatment and genetic counseling for affected patients, defying the medical common sense of trying to fit all findings into one diagnosis.


Dwarfism , Growth Disorders , Child , Female , Humans , Exome Sequencing , Cross-Sectional Studies , Growth Disorders/diagnosis , Growth Disorders/genetics , Dwarfism/genetics , Phenotype
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1382-1386, 2023 Nov 10.
Article Zh | MEDLINE | ID: mdl-37906146

OBJECTIVE: To summarize the clinical features and biological characteristics of Helsmoortel Van der Aa syndrome (HVDAS) due to hotspot mutations of the ADNP gene in order to facilitate early diagnosis. METHODS: Clinical data and result of genetic testing for a girl with HVDAS due to hotspot mutation of the ADNP gene was summarized. Related literature was also reviewed. RESULTS: The patient, a 2-year-old girl, had presented with growth retardation, facial dysmorphism, psychomotor and language delay and recurrent respiratory infections. Whole exome sequencing revealed that she has harbored a heterozygous c.2496_2499delTAAA (p.Asn832Lysfs*81) variant of the ADNP gene, which was not found in either of her parents. CONCLUSION: Although the typical features of the HVDAS have included intellectual disability and autism spectrum disorders, growth retardation and premature primary tooth eruption may also be present. In addition, the phenotypic difference among individuals carrying hot spot variants of the ADNP gene was not prominent.


Abnormalities, Multiple , Intellectual Disability , Humans , Female , Child, Preschool , Intellectual Disability/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Abnormalities, Multiple/genetics , Mutation , Rare Diseases , Growth Disorders/genetics
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1292-1295, 2023 Oct 10.
Article Zh | MEDLINE | ID: mdl-37730234

OBJECTIVE: To analyze the genetic characteristics of a child with Meier-Gorlin syndrome (MGS) due to a homozygous variant of the ORC6 gene. METHODS: A child who was admitted to the Children's Hospital Affiliated to Soochow University on March 25, 2019 due to growth retardation was selected as the study subject. Clinical data of the child was collected. Whole exome sequencing was carried out for the child. Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 8-year-and-3-month-old male, has featured short stature, small ears, bilateral cryptorchidism and patellar dysplasia. His parents were of first cousins. The child was found to harbor a homozygous c.712A>T (p.K238*) missense variant of the ORC6 gene, which may lead to premature termination of protein translation. Sanger sequencing confirmed that both of his parents were heterozygous carriers. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was classified as pathogenic (PVS1_Moderate+PM2_Supporting+PM3+PP3+PP4). CONCLUSION: The homozygous c.712A>T (p.K238*) variant probably underlay the MGS in this child.


Congenital Microtia , Dwarfism , Humans , Infant , Male , Computational Biology , Congenital Microtia/genetics , Dwarfism/genetics , Growth Disorders/genetics , Origin Recognition Complex/genetics
19.
Prenat Diagn ; 43(10): 1355-1365, 2023 09.
Article En | MEDLINE | ID: mdl-37526276

OBJECTIVE: To explore the intrauterine phenotypic spectrum of short stature homeobox-containing (SHOX) gene-associated skeletal dysplasia and provide genetic counseling at-risk pregnancies. METHOD: We analyzed the fetuses with SHOX-microdeletions identified by single nucleotide polymorphism (SNP)-array. The intrauterine phenotypes and outcomes were further elaborated. RESULTS: Nine fetuses carrying a single SHOX-microdeletion were reported, with deletion sizes ranging from 0.134 to 1.35 Mb. Shortened long bones were observed in all fetuses, varying from -2.0 standard deviation (SD) to -5.3 SD. Moreover, all cases had a femur length/foot ratio less than 0.87 and a femur/abdominal circumference ratio greater than 0.16, suggesting that non-lethal skeletal dysplasia may be involved. Two fetuses showed intrauterine growth restriction, and two had nasal bone hypoplasia. Prenatal ultrasonography did not reveal other obvious anomalies, including the Madelung deformity. Five microdeletions were inherited and one was de novo. Five terminations and four newborns were recorded. Two newborns had normal stature, and two were short-statured (height <3rd percentile), with one having inflexible wrists. CONCLUSIONS: SHOX haploinsufficiency may manifest with shortened fetal long bones. The combination of history taking, prenatal ultrasonography, and SNP-array can prompt early prenatal diagnosis and timely postnatal treatment of SHOX-associated skeletal dysplasia.


Fetus , Growth Disorders , Pregnancy , Female , Humans , Infant, Newborn , Short Stature Homeobox Protein/genetics , Growth Disorders/genetics , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/genetics , Phenotype , Homeodomain Proteins/genetics
20.
BMC Med Genomics ; 16(1): 194, 2023 08 21.
Article En | MEDLINE | ID: mdl-37605180

BACKGROUND: Short stature is a common human trait. More severe and/or associated short stature is usually part of the presentation of a syndrome and may be a monogenic disease. The present study aimed to identify the genetic etiology of children with short stature of unknown origin. METHODS: A total of 232 children with short stature of unknown origin from March 2013 to May 2020 were enrolled in this study. Whole exome sequencing (WES) was performed for the enrolled patients to determine the underlying genetic etiology. RESULTS: We identified pathogenic or likely pathogenic genetic variants in 18 (7.8%) patients. All of these variants were located in genes known to be associated with growth disorders. Five of the genes are associated with paracrine signaling or cartilage extracellular matrix in the growth plate, including NPR2 (N = 1), ACAN (N = 1), CASR (N = 1), COMP (N = 1) and FBN1 (N = 1). Two of the genes are involved in the RAS/MAPK pathway, namely, PTPN11 (N = 6) and NF1 (N = 1). Two genes are associated with the abnormal growth hormone-insulin-like growth factor 1 (GH-IGF1) axis, including GH1 (N = 1) and IGF1R (N = 1). Two mutations are located in PROKR2, which is associated with gonadotropin-releasing hormone deficiency. Mutations were found in the remaining two patients in genes with miscellaneous mechanisms: ANKRD11 (N = 1) and ARID1A (N = 1). CONCLUSIONS: The present study identified pathogenic or likely pathogenic genetic variants in eighteen of the 232 patients (7.8%) with short stature of unknown origin. Our findings suggest that in the absence of prominent malformation, genetic defects in hormones, paracrine factors, and matrix molecules may be the causal factors for this group of patients. Early genetic testing is necessary for accurate diagnosis and precision treatment.


Dwarfism , Humans , Child , Dwarfism/genetics , Growth Disorders/genetics , Genetic Testing , Mutation
...