Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
PLoS One ; 19(2): e0292190, 2024.
Article in English | MEDLINE | ID: mdl-38359044

ABSTRACT

Amyotrophic lateral sclerosis (ALS) has been linked to overactivity of the protein kinase RNA-like ER kinase (PERK) branch of the unfolded protein response (UPR) pathway, both in ALS patients and mouse models. However, attempts to pharmacologically modulate PERK for therapeutic benefit have yielded inconsistent and often conflicting results. This study sought to address these discrepancies by comprehensively evaluating three commonly used, CNS-penetrant, PERK modulators (GSK2606414, salubrinal, and Sephin1) in the same experimental models, with the goal of assessing the viability of targeting the PERK pathway as a therapeutic strategy for ALS. To achieve this goal, a tunicamycin-challenge assay was developed using wild-type mice to monitor changes in liver UPR gene expression in response to PERK pathway modulation. Subsequently, multiple dosing regimens of each PERK modulator were tested in standardized, well-powered, gender-matched, and litter-matched survival efficacy studies using the SOD1G93A mouse model of ALS. The alpha-2-adrenergic receptor agonist clonidine was also tested to elucidate the results obtained from the Sephin1, and of the previously reported guanabenz studies, by comparing the effects of presence or absence of α-2 agonism. The results revealed that targeting PERK may not be an ideal approach for ALS treatment. Inhibiting PERK with GSK2606414 or activating it with salubrinal did not confer therapeutic benefits. While Sephin1 showed some promising therapeutic effects, it appears that these outcomes were mediated through PERK-independent mechanisms. Clonidine also produced some favorable therapeutic effects, which were unexpected and not linked to the UPR. In conclusion, this study highlights the challenges of pharmacologically targeting PERK for therapeutic purposes in the SOD1G93A mouse model and suggests that exploring other targets within, and outside, the UPR may be more promising avenues for ALS treatment.


Subject(s)
Adenine/analogs & derivatives , Amyotrophic Lateral Sclerosis , Cinnamates , Guanabenz , Guanabenz/analogs & derivatives , Indoles , Thiourea/analogs & derivatives , Mice , Humans , Animals , Guanabenz/pharmacology , Guanabenz/therapeutic use , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Clonidine , Unfolded Protein Response , Adrenergic alpha-2 Receptor Agonists
2.
Chem Res Toxicol ; 36(7): 1071-1080, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37348131

ABSTRACT

Overdose of acetaminophen, a widely used antipyretic and analgesic drug, is one of the leading causes of drug-induced acute liver injury in the United States and worldwide. Phase-I metabolism of acetaminophen generates the toxic N-acetyl-p-benzoquinone imine (NAPQI) intermediate. Reactions of NAPQI with a wide range of biomolecules cause increased oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and mitochondrial dysfunction, some of the cellular events contributing toward liver toxicity. Previously, we evaluated the potential of an FDA-approved, ER stress-modulating antihypertensive drug, Wytensin (trans-guanabenz, E-GA), as an antidote for acetaminophen hepatotoxicity. E-GA prevented elevation of the liver enzyme alanine aminotransferase (ALT), even when administered up to 6 h after acetaminophen overdose, and exhibited synergistic analgesic interactions. However, the commercially available guanabenz exists solely as a trans-isomer and suffers from sedative side effects resulting from the inhibition of central α2A-adrenergic receptors in locus coeruleus. Here, we studied the utility of the relatively unexplored cis-isomer of guanabenz as a treatment option for acetaminophen-induced liver toxicity. cis(Z)-Guanabenz acetate (Z-GA) lacks interaction with α2A-adrenoreceptors and is thus devoid of sedative, blood-pressure-lowering side effects of E-GA. Treatment of mice with Z-GA (10 mg/kg) before acetaminophen overdose and up to 6 h post APAP administration prevented liver injury and suppressed the elevation of serum ALT levels. Mechanistically, hepatoprotective effects of both isomers are similar and partly attributed to attenuation of the ER stress and oxidative stress in the liver. The results of this study suggest that Z-GA may be a safer, effective antidote for the clinical management of acute liver injury resulting from acetaminophen overdose. It also raises a tantalizing possibility of a prophylactic combination of the geometric isomer of the approved drug guanabenz with acetaminophen in a clinical setting.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/toxicity , Guanabenz/pharmacology , Antidotes/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Liver/metabolism , Oxidative Stress , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism
3.
J Transl Med ; 21(1): 340, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217929

ABSTRACT

BACKGROUND: We previously demonstrated that an Italian family affected by a severe dilated cardiomyopathy (DCM) with history of sudden deaths at young age, carried a mutation in the Lmna gene encoding for a truncated variant of the Lamin A/C protein (LMNA), R321X. When expressed in heterologous systems, such variant accumulates into the endoplasmic reticulum (ER), inducing the activation of the PERK-CHOP pathway of the unfolded protein response (UPR), ER dysfunction and increased rate of apoptosis. The aim of this work was to analyze whether targeting the UPR can be used to revert the ER dysfunction associated with LMNA R321X expression in HL-1 cardiac cells. METHODS: HL-1 cardiomyocytes stably expressing LMNA R321X were used to assess the ability of 3 different drugs targeting the UPR, salubrinal, guanabenz and empagliflozin to rescue ER stress and dysfunction. In these cells, the state of activation of both the UPR and the pro-apoptotic pathway were analyzed monitoring the expression levels of phospho-PERK, phospho-eIF2α, ATF4, CHOP and PARP-CL. In addition, we measured ER-dependent intracellular Ca2+ dynamics as indicator of proper ER functionality. RESULTS: We found that salubrinal and guanabenz increased the expression levels of phospho-eIF2α and downregulated the apoptosis markers CHOP and PARP-CL in LMNA R321X-cardiomyocytes, maintaining the so-called adaptive UPR. These drugs also restored ER ability to handle Ca2+ in these cardiomyocytes. Interestingly, we found that empagliflozin downregulated the apoptosis markers CHOP and PARP-CL shutting down the UPR itself through the inhibition of PERK phosphorylation in LMNA R321X-cardiomyocytes. Furthermore, upon empagliflozin treatment, ER homeostasis, in terms of ER ability to store and release intracellular Ca2+ was also restored in these cardiomyocytes. CONCLUSIONS: We provided evidence that the different drugs, although interfering with different steps of the UPR, were able to counteract pro-apoptotic processes and to preserve the ER homeostasis in R321X LMNA-cardiomyocytes. Of note, two of the tested drugs, guanabenz and empagliflozin, are already used in the clinical practice, thus providing preclinical evidence for ready-to-use therapies in patients affected by the LMNA R321X associated cardiomyocytes.


Subject(s)
Lamin Type A , Myocytes, Cardiac , Humans , Apoptosis , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Guanabenz/pharmacology , Homeostasis , Lamin Type A/genetics , Lamin Type A/metabolism , Myocytes, Cardiac/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Unfolded Protein Response
4.
Exp Parasitol ; 246: 108460, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642299

ABSTRACT

Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.


Subject(s)
Guanabenz , Nanoparticles , Toxoplasma , Toxoplasmosis , Animals , Mice , Guanabenz/pharmacology , Guanabenz/therapeutic use , Nanoparticles/therapeutic use , Pyrimethamine/therapeutic use , Pyrimethamine/pharmacology , Sulfadiazine/therapeutic use , Sulfadiazine/pharmacology , Toxoplasmosis/drug therapy
5.
Ann Clin Transl Neurol ; 9(8): 1147-1162, 2022 08.
Article in English | MEDLINE | ID: mdl-35778832

ABSTRACT

OBJECTIVE: Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects. METHODS: Wild-type and VWM mice were subjected to placebo, guanabenz or sephin1 treatments. Effects on clinical signs, neuropathology, and ISR deregulation were determined. Guanabenz's and sephin1's ISR-modifying effects were tested in cultured cells that expressed or lacked the α2-adrenergic receptor. RESULTS: Guanabenz improved clinical signs, neuropathological hallmarks, and ISR regulation in VWM mice, but sephin1 did not. Guanabenz's effects on the ISR in VWM mice were not replicated in cell cultures and the contribution of α2-adrenergic effects on the deregulated ISR could therefore not be assessed. INTERPRETATION: Guanabenz proved itself as a viable treatment option for VWM. The exact mechanism through which guanabenz exerts its ameliorating impact on VWM requires further studies. Sephin1 is not simply a guanabenz replacement without α2-adrenergic effects.


Subject(s)
Guanabenz , White Matter , Adrenergic Agents , Animals , Eukaryotic Initiation Factor-2B/genetics , Guanabenz/analogs & derivatives , Guanabenz/pharmacology , Mice , White Matter/pathology
6.
Nat Commun ; 13(1): 674, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115535

ABSTRACT

Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/ß-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated ß-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.


Subject(s)
Axin Protein/genetics , Colorectal Neoplasms/genetics , GTP-Binding Protein alpha Subunit, Gi2/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adrenergic alpha-2 Receptor Agonists/pharmacology , Animals , Axin Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Gene Expression Regulation, Neoplastic , Guanabenz/pharmacology , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mutation , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays/methods , beta Catenin/metabolism
7.
J Pharmacol Sci ; 147(3): 294-304, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34507638

ABSTRACT

Increase of sympathetic activity has been known to exacerbate osteoporosis through promotion of bone resorption. However, it is largely unknown about involvement of sympathetic activity in exacerbation of periodontitis. In this study, we investigated whether α2-adrenergic receptor (α2-AR) agonist guanabenz which decreases sympathetic activity, attenuates alveolar bone resorption in rats having high sympathetic activity with periodontitis. Volumes of residual alveolar bone and attachment levels in periodontium were examined using micro-computed tomography and hematoxylin-eosin staining, respectively. Furthermore, osteoclast numbers per bone surface and osteoclast surface per bone surface were measured using tartrate-resistant acid phosphatase staining. To examine the suppressive effects of guanabenz on pro-inflammatory cytokines, expression levels of tyrosine hydroxylase (TH), TNF-α, IL1-ß, and IL-6 in periodontium were measured using immunohistostaining. Administration of guanabenz attenuated loss of alveolar bone and attachment levels in rats having high sympathetic activity. Furthermore, its administration suppressed osteoclast numbers in rats having high sympathetic activity. TH, TNF-α, IL-1ß, and IL-6 positive cells in periodontium in rats treated with guanabenz for 12 weeks, were lower than those in control rats having high sympathetic activity. This study demonstrated administration of α2-AR agonist guanabenz attenuates alveolar bone resorption through decrease of sympathetic activity in rats.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/administration & dosage , Adrenergic alpha-2 Receptor Agonists/pharmacology , Bone Resorption/etiology , Bone Resorption/prevention & control , Guanabenz/administration & dosage , Guanabenz/pharmacology , Periodontitis/complications , Periodontitis/physiopathology , Animals , Bone Resorption/metabolism , Bone Resorption/physiopathology , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Male , Periodontitis/metabolism , Periodontium/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology
8.
Brain ; 144(9): 2635-2647, 2021 10 22.
Article in English | MEDLINE | ID: mdl-33905493

ABSTRACT

Strong evidence suggests that endoplasmic reticulum stress plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through altered regulation of proteostasis. Robust preclinical findings demonstrated that guanabenz selectively inhibits endoplasmic reticulum stress-induced eIF2α-phosphatase, allowing misfolded protein clearance, reduces neuronal death and prolongs survival in in vitro and in vivo models. However, its safety and efficacy in patients with ALS are unknown. To address these issues, we conducted a multicentre, randomized, double-blind trial with a futility design. Patients with ALS who had displayed an onset of symptoms within the previous 18 months were randomly assigned in a 1:1:1:1 ratio to receive 64 mg, 32 mg or 16 mg of guanabenz or placebo daily for 6 months as an add-on therapy to riluzole. The purpose of the placebo group blinding was to determine safety but not efficacy. The primary outcome was the proportion of patients progressing to higher stages of disease within 6 months as measured using the ALS Milano-Torino staging system, compared with a historical cohort of 200 patients with ALS. The secondary outcomes were the rate of decline in the total revised ALS functional rating scale score, slow vital capacity change, time to death, tracheotomy or permanent ventilation and serum light neurofilament level at 6 months. The primary assessment of efficacy was performed using intention-to-treat analysis. The treatment arms using 64 mg and 32 mg guanabenz, both alone and combined, reached the primary hypothesis of non-futility, with the proportions of patients who progressed to higher stages of disease at 6 months being significantly lower than that expected under the hypothesis of non-futility and a significantly lower difference in the median rate of change in the total revised ALS functional rating scale score. This effect was driven by patients with bulbar onset, none of whom (0/18) progressed to a higher stage of disease at 6 months compared with those on 16 mg guanabenz (4/8; 50%), the historical cohort alone (21/49; 43%; P = 0.001) or plus placebo (25/60; 42%; P = 0.001). The proportion of patients who experienced at least one adverse event was higher in any guanabenz arm than in the placebo arm, with higher dosing arms having a significantly higher proportion of drug-related side effects and the 64 mg arm a significantly higher drop-out rate. The number of serious adverse events did not significantly differ between the guanabenz arms and the placebo. Our findings indicate that a larger trial with a molecule targeting the unfolded protein response pathway without the alpha-2 adrenergic related side-effect profile of guanabenz is warranted.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Guanabenz/therapeutic use , Unfolded Protein Response/physiology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Double-Blind Method , Female , Guanabenz/pharmacology , Humans , Male , Middle Aged , Unfolded Protein Response/drug effects
9.
Neurotherapeutics ; 18(2): 1371-1392, 2021 04.
Article in English | MEDLINE | ID: mdl-33410111

ABSTRACT

Limited therapeutic efficacy of temozolomide (TMZ) against glioblastomas highlights the importance of exploring new drugs for clinical therapy. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, is currently being tested as therapy for glioblastomas. Unfortunately, sunitinib still has insufficient activity to cure glioblastomas. Our aim was to determine the molecular mechanisms counteracting sunitinib drug sensitivity and find potential adjuvant drugs for glioblastoma therapy. Through in vitro experiments, transcriptome screening by RNA sequencing, and in silico analyses, we found that sunitinib induced glioma apoptotic death, and downregulated genes were enriched in oncogenic genes of glioblastoma. Meanwhile, sunitinib-upregulated genes were highly associated with the protective autophagy process. Blockade of autophagy significantly enhanced sunitinib's cytotoxicity. Growth arrest and DNA damage-inducible protein (GADD) 34 was identified as a candidate involved in sunitinib-promoted autophagy through activating p38-mitogen-activated protein kinase (MAPK) signaling. Higher GADD34 levels predicted poor survival of glioblastoma patients and induced autophagy formation in desensitizing sunitinib cytotoxicity. Guanabenz, an alpha2-selective adrenergic agonist and GADD34 functional inhibitor, was identified to enhance the efficacy of sunitinib by targeting GADD34-induced protective autophagy in glioblastoma cells, TMZ-resistant cells, hypoxic cultured cells, sphere-forming cells, and colony formation abilities. A better combined treatment effect with sunitinib and guanabenz was also observed by using xenograft mice. Taken together, the sunitinib therapy combined with guanabenz in the inhibition of GADD34-enhanced protective autophagy may provide a new therapeutic strategy for glioblastoma.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Autophagy/drug effects , Brain Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Glioblastoma/genetics , Guanabenz/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 1/antagonists & inhibitors , Sunitinib/pharmacology , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Autophagy/genetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Computer Simulation , Drug Therapy, Combination , Gene Expression Profiling , Glioblastoma/drug therapy , Humans , Mice , Molecular Targeted Therapy , Neoplasm Transplantation , Protein Phosphatase 1/genetics , RNA-Seq , Temozolomide/therapeutic use , Up-Regulation
10.
Sci Rep ; 10(1): 19333, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168944

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of peripheral immune cells into the central nervous system, demyelination, and neuronal damage. There is no cure for MS, but available disease-modifying therapies can lessen severity and delay progression. However, current therapies are suboptimal due to adverse effects. Here, we investigate how the FDA-approved antihypertensive drug, guanabenz, which has a favorable safety profile and was recently reported to enhance oligodendrocyte survival, exerts effects on immune cells, specifically microglia and macrophages. We first employed the experimental autoimmune encephalomyelitis (EAE) model and observed pronounced immunomodulation evident by a reduction in pro-inflammatory microglia and macrophages. When guanabenz was administered in the cuprizone model, in which demyelination is less dependent upon immune cells, we did not observe improvements in remyelination, oligodendrocyte numbers, and effects on microglial activation were less dramatic. Thus, guanabenz may be a promising therapeutic to minimize inflammation without exerting severe off-target effects.


Subject(s)
Demyelinating Diseases , Guanabenz/pharmacology , Macrophages/drug effects , Microglia/drug effects , Animals , Antihypertensive Agents/pharmacology , B7-2 Antigen/metabolism , Central Nervous System/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Inflammation/drug therapy , Macrophage Activation , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neurons/drug effects , Nitric Oxide Synthase Type II/metabolism , Oligodendroglia/drug effects , Patient Safety , Phagocytosis , Remyelination/drug effects
11.
Sci Rep ; 10(1): 13671, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792584

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic triglycerides (TG) and hyperglycemia arising due to persistent insulin resistance, and is profoundly linked to obesity. However, there is currently no established treatment for NAFLD in obese human subjects. We previously isolated Helz2, the expression of which was upregulated in human and mouse NAFLD, and its deletion activated the hepatic expression of functional leptin receptor long form (Leprb) and suppressed NAFLD development and body weight (BW) gain in obese mice. A high-throughput assay of small-molecule drugs revealed that guanabenz acetate (Ga), originally used to treat hypertension, possesses a high affinity constant against HELZ2, and its administration activates LEPRB expression in HepG2 cells in vitro. The chronic oral administration of Ga shows the selective leptin sensitization in the liver via upregulation of hepatic Leprb expression, which affects expression of genes involved in lipogenesis and fatty acid ß-oxidation and diminishes hepatocyte hypertrophy with droplets enriched in TG in high-fat diet-induced obese mice. This activity significantly improves insulin resistance to decrease hyperglycemia and hepatocyte and adipocyte weights, resulting in BW reduction without reducing food intake. Regarding drug repositioning, Ga has the potential to effectively treat NAFLD and hyperglycemia in obese patients.


Subject(s)
Guanabenz/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Nuclear Proteins/metabolism , Obesity/drug therapy , Receptors, Leptin/metabolism , Administration, Oral , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Repositioning , Gene Expression Regulation , Guanabenz/pharmacology , Hep G2 Cells , Humans , Lipogenesis/drug effects , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Nuclear Proteins/antagonists & inhibitors , Obesity/chemically induced , Obesity/metabolism
12.
Int J Mol Sci ; 21(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846985

ABSTRACT

Sephin1 is a derivative of guanabenz that inhibits the dephosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α) and therefore may enhance the integrated stress response (ISR), an adaptive mechanism against different cellular stresses, such as accumulation of misfolded proteins. Unlike guanabenz, Sephin1 provides neuroprotection without adverse effects on the α2-adrenergic system and therefore it is considered a promising pharmacological therapeutic tool. Here, we have studied the effects of Sephin1 on N-methyl-D-aspartic acid (NMDA) receptor signaling which may modulate the ISR and contribute to excitotoxic neuronal loss in several neurodegenerative conditions. Time-course analysis of peIF2α levels after NMDA receptor overactivation showed a delayed dephosphorylation that occurred in the absence of activating transcription factor 4 (ATF4) and therefore independently of the ISR, in contrast to that observed during endoplasmic reticulum (ER) stress induced by tunicamycin and thapsigargin. Similar to guanabenz, Sephin1 completely blocked NMDA-induced neuronal death and was ineffective against AMPA-induced excitotoxicity, whereas it did not protect from experimental ER stress. Interestingly, both guanabenz and Sephin1 partially but significantly reduced NMDA-induced cytosolic Ca2+ increase, leading to a complete inhibition of subsequent calpain activation. We conclude that Sephin1 and guanabenz share common strong anti-excitotoxic properties with therapeutic potential unrelated to the ISR.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Guanabenz/analogs & derivatives , Neurons/drug effects , Neuroprotective Agents/pharmacology , Stress, Physiological/drug effects , Animals , Calcium/metabolism , Cells, Cultured , Cytoprotection/drug effects , Embryo, Mammalian , Guanabenz/pharmacology , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Neurons/metabolism , Neurons/physiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
Biochem Pharmacol ; 174: 113834, 2020 04.
Article in English | MEDLINE | ID: mdl-32027884

ABSTRACT

Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α2-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α2-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.


Subject(s)
Acid Sensing Ion Channels/metabolism , Computer Simulation , Guanabenz/analogs & derivatives , Guanabenz/metabolism , Guanidines/metabolism , Quinazolines/metabolism , Acid Sensing Ion Channels/chemistry , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Guanabenz/chemistry , Guanabenz/pharmacology , Guanidines/chemistry , Guanidines/pharmacology , Protein Structure, Secondary , Quinazolines/chemistry , Quinazolines/pharmacology
14.
Mol Neurobiol ; 57(5): 2206-2219, 2020 May.
Article in English | MEDLINE | ID: mdl-31981074

ABSTRACT

Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.


Subject(s)
Guanabenz/analogs & derivatives , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prions/drug effects , Scrapie/drug therapy , Unfolded Protein Response/drug effects , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Guanabenz/administration & dosage , Guanabenz/pharmacology , Guanabenz/therapeutic use , Metformin/administration & dosage , Metformin/pharmacology , Metformin/therapeutic use , Mice , Neuroblastoma/pathology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphorylation/drug effects , Protein Phosphatase 1/antagonists & inhibitors , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/metabolism , Scrapie/pathology
15.
Chem Res Toxicol ; 33(1): 162-171, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31524377

ABSTRACT

Endoplasmic reticulum (ER) stress has been shown to be involved in the hepatotoxicity of acetaminophen (APAP). Guanabenz (GA), a widely known antihypertensive drug, is reported to exhibit an anti-ER stress effect. In this study, we investigated the potential of GA as an antidote against APAP-induced hepatotoxicity. The underlying biochemical mechanisms for the hepatoprotective effect of GA were explored. Here we found that treatment of mice with GA (10 mg/kg) before APAP overdose dramatically prevented APAP-induced liver enzyme elevation and resultant toxicity in mice, as indicated by suppression of elevated serum alanine aminotransferase (ALT) levels and liver histological analysis. Importantly, delayed administration of GA within 6 h after APAP overdose also showed an almost equivalent protective effect against APAP liver toxicity. Mechanistically, several pathways are involved in the protective effect of GA against APAP-induced live toxicity, including attenuation of ER stress and oxidative stress, increased levels of nontoxic phase I and II metabolites of APAP, decrease in the formation of toxic N-acetyl-p-benzoquinone imine (NAPQI), and its subsequent protein binding. Importantly, combination of GA with APAP exhibited synergistic interaction in the latter's analgesic activity, while sparing its antipyretic action. These findings provide the preclinical evidence of GA as a promising antidote for treatment of APAP-induced liver toxicity and raise a possibility of its combination with APAP in clinical settings.


Subject(s)
Acetaminophen , Analgesics, Non-Narcotic/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Guanabenz/therapeutic use , Protective Agents/therapeutic use , Alanine Transaminase/blood , Analgesia , Analgesics, Non-Narcotic/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Glutathione/metabolism , Guanabenz/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Oxidative Stress/drug effects , Protective Agents/pharmacology
16.
Fungal Genet Biol ; 134: 103280, 2020 01.
Article in English | MEDLINE | ID: mdl-31622671

ABSTRACT

Proteinaceous infectious particles causing mammalian transmissible spongiform encephalopathies or prions are being extensively studied. However due to their hazardous nature, the initial screening of potential anti-prion drugs is often made in a yeast-based screening system utilizing a well-characterized [PSI+] prion (amyloid formed by the translation termination factor Sup35p). In the [PSI+] prion screening system (white/red colony assay), the prion phenotype yields white colonies while addition of an anti-prion drug will yield red colonies. However, this system has some limitations. It is difficult to quantify the effectiveness of the anti-prion compound, the diffusion of the studied compound may affect the result, and the deficiency of glutathione in cells may prevent the formation of red pigment in cured cells. Therefore, alternative yeast prion screening systems are still needed. This article aims to present an alternative yeast-based system to evaluate anti-prion activity of chemical compounds. The method that was used is based on an artificial [LEU2+] prion created by fusing Leu2p with the prion-forming domain of Sup35p in Saccharomyces cerevisiae. Phenotypic analysis and semi-denaturating detergent agarose gel electrophoresis (SDD-AGE) confirmed the presence of the artificial [LEU2+] prion in yeast cells. This screening system verified the anti-prion activity of 3 drugs that were found to have been active in the white/red colony assay, while one compound (6-chlorotacrine) that was active in the white/red colony assay was found to be inactive in the [LEU2+] system. This new system also appears to be more sensitive than the white/red colony assay.


Subject(s)
3-Isopropylmalate Dehydrogenase/genetics , Drug Evaluation, Preclinical/methods , Prions/drug effects , Prions/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Escherichia coli/genetics , Guanabenz/pharmacology , Peptide Termination Factors/genetics , Phenanthridines/pharmacology , Phenotype , Tacrine/analogs & derivatives , Tacrine/chemical synthesis , Tacrine/pharmacology
17.
ACS Infect Dis ; 5(12): 2039-2046, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31612700

ABSTRACT

Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 µM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 µM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.


Subject(s)
Acanthamoeba castellanii/drug effects , Gold/chemistry , Guanabenz/pharmacology , Naegleria fowleri/drug effects , Silver/chemistry , Acanthamoeba castellanii/growth & development , Amebicides/chemistry , Amebicides/pharmacology , Cell Line , Drug Repositioning , Guanabenz/chemistry , HeLa Cells , Humans , Metal Nanoparticles , Microscopy, Atomic Force , Molecular Structure , Naegleria fowleri/growth & development , Nanoconjugates/chemistry , Particle Size , Trophozoites/drug effects
18.
Arch Biochem Biophys ; 674: 108109, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31541620

ABSTRACT

AIMS: to investigate α2-AR subtype distribution and the relationship between receptor amounts and their functionality in normotensive and spontaneously hypertensive rats. METHODS: experiments were performed on left ventricular cardiomyocytes isolated from Wistar rats and SHR (2-2.5 months). Molecular routine tools (RT-PCR, Western blotting, immunocytochemistry) were used for semi-quantitative estimation of α2-AR subtypes. Fluorescence of both the Ca2+-dependent and NO-sensitive probes were used to define functionality of α2-AR, evaluated by changes in the dynamics of spontaneous Ca2+-transients and NO production in cardiomyocytes in response to the α2-AR agonist application. RESULTS: percentage of the three known α2-AR subtypes in Wistar and SHR cardiomyocytes is not principally different. Total amounts of α2A-AR subtype in SHR increases, for both the sarcolemmal and intracellular receptor pools. Total number of α2B-AR is also significantly higher in hypertensive rats with an increase in the sarcolemmal, but not the intracellular immunoreactivity. For α2C-AR subtype, no significant differences between Wistar and SHR were identified, despite the fact that its amounts in cardiomyocytes are somewhat higher than the other two subtypes. Notwithstanding the increased expression of α2-AR subtypes in SHR, α2-AR-agonist guanabenz was ineffective in suppression of spontaneous Ca2+-transients, as well as the lowering of free calcium levels in the cytosol. Guanabenz-induced NO synthesis is well correlated with the Ca2+-loading into sarcoplasmic reticulum and actually decreased in SHR cardiomyocytes. CONCLUSION: data indicate α2-AR dysfunction and ineffectiveness of α2-AR-mediated signaling pathways in this model of cardiovascular pathologies. Results can be used for clinical practice for more effective control of cardiovascular functions in various disease states.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Animals , Calcium/metabolism , Dose-Response Relationship, Drug , Guanabenz/pharmacology , Male , Nitric Oxide/metabolism , Rats, Inbred SHR , Rats, Wistar , Signal Transduction/drug effects , Up-Regulation
19.
Biochem Biophys Res Commun ; 512(4): 908-913, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30929926

ABSTRACT

α2-Adrenoceptors (α2-AR) found in the cardiomyocyte's sarcolemma represent a very important negative feedback for control of myocardial contractility by endogenous catecholamines. Earlier, we showed that the endogenous neurotransmitter agmatine in micromolar concentrations via α2-AR activates the nitric oxide (NO) synthesis, enhancing the Ca2+ pumping into sarcoplasmic reticulum (SR). In the millimolar doses it inhibits Ca2+ sequestration by SR Ca2+ ATPase (SERCA), acting through the first type of imidazoline receptors. Here, we study the functional activity of agmatine, as well as a specific α2-agonist, guanabenz, in respect to spontaneous Ca2+-transients in SHR cardiomyocytes of the early age (2-2.5 months), and adulthood animals (8-9 months). α2-mediated cardioprotective effect was almost twofold decreased in SHR cardiac cells compared to normotensive rats of the corresponding age, despite the fact that both α2A- and α2B-AR protein levels were significantly increased in SHR cardiomyocytes. NO-mediated facilitation of SERCA activity is substantially reduced in SHR cardiomyocytes vs. normotensive rats. These data suggest that the SHR phenotype starting from early age shows signs of the impaired sarcolemmal α2-AR signaling, which can aggravate the development of this cardiovascular pathology.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Age Factors , Agmatine/pharmacology , Animals , Calcium Signaling/drug effects , Cytosol/metabolism , Guanabenz/pharmacology , Myocytes, Cardiac/drug effects , Nitric Oxide/metabolism , Rats, Inbred SHR , Rats, Wistar , Sarcolemma/drug effects , Sarcolemma/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
20.
Eur J Pharmacol ; 854: 320-327, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31009638

ABSTRACT

Alpha 2 (α2-) adrenoceptor agonists, such as clonidine or dexmedetomidine, have been found to inhibit hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels, not only by reducing intracellular cyclic AMP levels but also by directly blocking HCN channels. In this study, we examined the inhibitory effect of guanabenz, a centrally acting α2-adrenoceptor agonist with high specificity for α2A-subtype, on HCN channels in mesencephalic trigeminal nucleus (MTN) neurons which robustly express HCN channels and have been suggested to coexpress α2A-adrenoceptors. By performing whole-cell patch-clamp recording on MTN neurons in brainstem slices, hyperpolarization-activated inward current (Ih) was examined during guanabenz treatment. Guanabenz inhibited Ih in a dose-dependent manner, which was likely to be ZD7288-sensitive HCN current as it did not affect barium-sensitive inward rectifying potassium current. Guanabenz not only inhibited Ih but also shifted the voltage-dependent activation curve to hyperpolarizing potentials. Interestingly, Ih inhibition by guanabenz was not reversed by α2-adrenoceptor antagonist atipamezole treatment or by intracellular cyclic AMP perfusion, suggesting that the inhibition may not result from α2A-adrenoceptor signalling pathway but from direct inhibition of HCN channels. Coherent to our electrophysiological results, single-cell RT-PCR revealed that most MTN neurons lack α2A-adrenoceptor mRNA. Our study demonstrates that guanabenz can directly inhibit HCN channels in addition to its primary role of activating α2A-adrenoceptors.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Guanabenz/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Neurons/drug effects , Tegmentum Mesencephali/cytology , Animals , Dose-Response Relationship, Drug , Electrophysiological Phenomena/drug effects , Female , Gene Expression Regulation/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Membrane Potentials/drug effects , Neurons/cytology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...