Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.422
1.
Traffic ; 25(5): e12936, 2024 May.
Article En | MEDLINE | ID: mdl-38725127

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Endosomes , Guanine Nucleotide Exchange Factors , Nerve Growth Factor , Neuronal Outgrowth , Receptor, trkA , Animals , PC12 Cells , Receptor, trkA/metabolism , Nerve Growth Factor/metabolism , Rats , Endosomes/metabolism , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Mice , Protein Transport , Ganglia, Spinal/metabolism , Mice, Knockout
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38748250

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Neuronal Plasticity , Presynaptic Terminals , Signal Transduction , Animals , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Shelterin Complex/metabolism , Pinocytosis , Drosophila
3.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722278

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA-Binding Proteins , Endoplasmic Reticulum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , HeLa Cells , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Protein Folding , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
BMC Pulm Med ; 24(1): 248, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764064

BACKGROUND: Neuronal guanine nucleotide exchange factor (NGEF) plays a key role in several cancers; however, its role in lung adenocarcinoma (LUAD) remains unclear. The aim of this study was to evaluate the efficacy of NGEF as a prognostic biomarker and potential therapeutic target for LUAD. METHODS: NGEF expression data for multiple cancers and LUAD were downloaded from multiple databases. The high- and low-NGEF expression groups were constructed based on median NGEF expression in LUAD samples, and then performed Kaplan-Meier survival analysis. Differentially expressed genes (DEGs) from the two NGEF expression groups were screened and applied to construct a protein-protein interaction network. The primary pathways were obtained using gene set enrichment analysis. The associations between NGEF expression and clinical characteristics, immune infiltration, immune checkpoint inhibitors (ICIs), sensitivity to chemotherapy, and tumor mutation burden (TMB) were investigated using R. Levels of NGEF expression in the lung tissue was validated using single-cell RNA sequencing, quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blot analysis. RESULTS: The expression of NGEF mRNA was upregulated in multiple cancers. mRNA and protein expression levels of NGEF were higher in patients with LUAD than in controls, as validated using qPCR and western blot. High NGEF expression was an independent prognostic factor for LUAD and was associated with advanced tumor stage, large tumor size, more lymph node metastasis, and worse overall survival (OS). A total of 182 overlapping DEGs were screened between The Cancer Genome Atlas and GSE31210, among which the top 20 hub genes were identified. NGEF expression was mainly enriched in the pathways of apoptosis, cell cycle, and DNA replication. Moreover, elevated NGEF expression were associated with a high fraction of activated memory CD4+ T cells and M0 macrophages; elevated expression levels of the ICIs: programmed cell death 1 and programmed cell death 1 ligand 1 expression; higher TMB; and better sensitivity to bortezomib, docetaxel, paclitaxel, and parthenolide, but less sensitivity to axitinib and metformin. CONCLUSION: NGEF expression is upregulated in LUAD and is significantly associated with tumor stages, OS probability, immune infiltration, immunotherapy response, and chemotherapy response. NGEF may be a potential diagnostic and prognostic biomarker and therapeutic target in LUAD.


Adenocarcinoma of Lung , Biomarkers, Tumor , Guanine Nucleotide Exchange Factors , Immunotherapy , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immunotherapy/methods , Male , Female , Middle Aged , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Aged , Protein Interaction Maps
5.
Viruses ; 16(5)2024 05 08.
Article En | MEDLINE | ID: mdl-38793626

HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.


Guanine Nucleotide Exchange Factors , Hepatitis B virus , Hepatocytes , Humans , Hepatitis B virus/physiology , Hepatitis B virus/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Hepatocytes/virology , Hepatocytes/metabolism , Virus Internalization , Virus Replication , Hepatitis B/virology , Hepatitis B/metabolism , DNA, Viral/metabolism , DNA, Viral/genetics , Animals
6.
Commun Biol ; 7(1): 543, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714795

The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.


Dishevelled Proteins , Guanine Nucleotide Exchange Factors , Molecular Dynamics Simulation , Protein Binding , Dishevelled Proteins/metabolism , Dishevelled Proteins/chemistry , Dishevelled Proteins/genetics , Humans , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , PDZ Domains , Amino Acid Motifs , Wnt Signaling Pathway , Peptides/metabolism , Peptides/chemistry , Binding Sites , Microfilament Proteins , Intracellular Signaling Peptides and Proteins
7.
Cardiovasc Diabetol ; 23(1): 166, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730425

BACKGROUND: Studies have shown that RASGRP1 was potently associated with the onset of type 2 diabetes mellitus (T2DM), and RASGRP1 rs7403531 was significantly correlated with islet function in T2DM patients. However, the effect of RASGRP1 polymorphism on blood glucose and blood pressure in T2DM patients after continuous treatment has yet to be fully elucidated. OBJECTIVE: This study aimed to explore the association between RASGRP1 genetic polymorphism and cardiovascular complications in T2DM patients, so as to provide more evidence for the individualized treatment of T2DM patients. METHODS: We retrospectively analyzed a large-scale multicenter drug clinical study cohort that based on a 2 × 2 factorial (glucose control axis and blood pressure lowering axis) randomized controlled design, with follow-up for 5 years. The major vascular endpoint events included cardiovascular death, non-fatal stroke, coronary heart disease, new-onset or worsening renal disease, and diabetic retinopathy. RASGRP1 rs12593201, rs56254815 and rs7403531 were finally selected as candidate single nucleotide polymorphisms. Mixed linear model and Cox hazard ratio (HR) model were used for data analysis with IBM SPSS (version 20.0 for windows; Chicago, IL). RESULTS: Our study enrolled 1357 patients with high-risk diabetes, with a mean follow-up duration of 4.8 years. RASGRP1 rs7403531 was associated with vascular events in hypoglycemic and antihypertensive therapy. Specifically, compared with CC carriers, patients with CT/TT genotype had fewer major microvascular events (HR = 0.41, 95% confidence interval (CI) 0.21-0.80, P = 0.009), and reduced the risk of major eye disease events (HR = 0.44, 95% CI 0.20-0.94, P = 0.03). For glucose lowering axis, CT/TT carriers had a lower risk of secondary nephropathy (HR = 0.48, 95% CI 0.25-0.92, P = 0.03) in patients with standard glycemic control. For blood pressure lowering axis, all cerebrovascular events (HR = 2.24, 95% CI 1.11-4.51, P = 0.025) and stroke events (HR = 2.07, 95% CI 1.03-4.15, P = 0.04) were increased in patients with CC genotype compared to those with CT/TT genotype in the placebo group, respectively. Furthermore, patients with CC genotype showed a reduced risk of major cerebrovascular events in antihypertensive group (HR = 0.36, 95% CI 0.15-0.86, P = 0.021). For RASGRP1 rs56254815, compared with the AA genotype carriers, the systolic blood pressure of AG/GG carriers in the antihypertensive group decreased by 1.5mmhg on average (P = 0.04). In the placebo group, the blood pressure of AG/GG carriers was 1.7mmHg higher than that of AA carriers (P = 0.02). CONCLUSION: We found that patients with G allele of RASGRP1 (rs56254815) showed a better antihypertensive therapy efficacy in T2DM patients. The rs7403531 T allele could reduce the risk of major microvascular events and major eye diseases in T2DM patients receiving either hypoglycemic or antihypertensive therapy. Our findings suggest that RASGRP1 genetic polymorphism might predict the cardiovascular complications in T2DM patients.


Antihypertensive Agents , Blood Glucose , Blood Pressure , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Glycemic Control , Guanine Nucleotide Exchange Factors , Polymorphism, Single Nucleotide , Humans , Male , Female , Middle Aged , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/adverse effects , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , China/epidemiology , Blood Glucose/metabolism , Blood Glucose/drug effects , Aged , Retrospective Studies , Guanine Nucleotide Exchange Factors/genetics , Risk Factors , Treatment Outcome , Glycemic Control/adverse effects , Blood Pressure/drug effects , Blood Pressure/genetics , Asian People/genetics , Diabetic Angiopathies/genetics , Diabetic Angiopathies/diagnosis , Risk Assessment , Phenotype , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Time Factors , Biomarkers/blood , Genetic Association Studies , Hypertension/genetics , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/diagnosis , DNA-Binding Proteins/genetics , East Asian People
8.
Curr Biol ; 34(10): 2132-2146.e5, 2024 05 20.
Article En | MEDLINE | ID: mdl-38688282

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Drosophila Proteins , Drosophila melanogaster , GTPase-Activating Proteins , Animals , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actomyosin/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Female , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Embryo, Nonmammalian/metabolism , Body Patterning
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 533-539, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684296

OBJECTIVE: To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID). METHODS: Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People's Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis. RESULTS: The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants (MECP2: c.502C>T, MECP2: c.916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants (MECP2: c.1157_1197del/c.925C>T, KDM5C: c.2128A>T, SLC6A8: c.1631C>T) and 6 variants of uncertain significance (KLHL15: c.26G>C, PAK3: c.970A>G/c.1520G>A, GRIA3: c.2153C>G, TAF1: c.2233T>G, HUWE1: c.10301T>A). The PAK3: c.970A>G, GRIA3: c.2153C>G and TAF1: c.2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81:19). Therefore, the PAK3: c.1520G>A variant may underlie its pathogenesis. CONCLUSION: Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.


Mental Retardation, X-Linked , Pedigree , Child , Child, Preschool , Female , Humans , Infant , Male , China , East Asian People/genetics , Exome Sequencing , Genetic Testing/methods , Guanine Nucleotide Exchange Factors/genetics , Histone Acetyltransferases , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , X Chromosome Inactivation
10.
Immunogenetics ; 76(3): 165-173, 2024 Jun.
Article En | MEDLINE | ID: mdl-38587548

X-linked hyper-immunoglobulin M (X-HIGM) syndrome and autosomal recessive hyper-immunoglobulin E syndrome (HIES) are rare inborn errors of immunity characterized by recurrent infections due to immune system impairment. In this study, we identified a novel hemizygous CD40 ligand (CD40L) mutation and compound heterozygous dedicator of cytokinesis-8 (DOCK8) mutations in two Han Chinese families with X-HIGM and HIES, respectively. We aimed to investigate the association between their genotypes and phenotypes. Genomic DNA was extracted from peripheral blood samples obtained from the families. Whole exome sequencing and Sanger sequencing were performed to identify and verify pathogenic variants in the two families. Clinical analyses of the probands were also performed. A novel hemizygous mutation of CD40L in exon 2 (c.257delA) was identified in the first proband, resulting in the substitution of glycine with glutamic acid at codon 86 of the protein. This leads to premature termination of translation at downstream codon 9 (p.E86Gfs*9). Sanger sequencing confirmed that the variant was inherited from the mother. The second proband carried two novel compound heterozygous mutations in DOCK8: one at exon 14 (c.1546C > G) inherited from the father, and the other at intron 41 (c.5355 + 6C > T; splicing) inherited from the mother. This study enhances our understanding of the pathogenetic mutation spectrum of CD40L and DOCK8 genes, facilitating the prenatal diagnosis of X-HIGM and HIES and enabling timely treatment of patients.


CD40 Ligand , Guanine Nucleotide Exchange Factors , Heterozygote , Mutation , Pedigree , Humans , Male , Guanine Nucleotide Exchange Factors/genetics , CD40 Ligand/genetics , Female , Job Syndrome/genetics , Hyper-IgM Immunodeficiency Syndrome, Type 1/genetics , Asian People/genetics , Child , Child, Preschool , China , Exome Sequencing , East Asian People
11.
Cells ; 13(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38607079

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Mechanotransduction, Cellular , Signal Transduction , Cell Proliferation , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Phosphorylation , Animals , Madin Darby Canine Kidney Cells , Dogs
12.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561375

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Sarcoma , Animals , Humans , Mice , Cell Cycle , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Sarcoma/genetics , Sarcoma/pathology , Ubiquitination , Up-Regulation
13.
PLoS One ; 19(4): e0295103, 2024.
Article En | MEDLINE | ID: mdl-38574162

The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.


GTPase-Activating Proteins , Myristates , GTPase-Activating Proteins/metabolism , Point Mutation , Myristic Acid , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , ADP-Ribosylation Factors/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism
14.
Adv Sci (Weinh) ; 11(19): e2307556, 2024 May.
Article En | MEDLINE | ID: mdl-38482725

Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.


Cerebral Hemorrhage , Disease Models, Animal , Mitochondria , Neurons , Pentacyclic Triterpenes , Animals , Pentacyclic Triterpenes/pharmacology , Mice , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Neurons/metabolism , Neurons/drug effects , Male , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Neuroprotective Agents/pharmacology , Triterpenes/pharmacology , Mice, Inbred C57BL , Signal Transduction/drug effects
15.
J Cell Sci ; 137(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38506245

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Exocytosis , Monomeric GTP-Binding Proteins , Humans , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Cell Degranulation , Guanine Nucleotide Exchange Factors/genetics , Death Domain Receptor Signaling Adaptor Proteins
16.
Cell Rep ; 43(4): 114010, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38536817

Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange. Rpgr knockout (KO) in mice leads to photoreceptor degeneration owing to autophagy impairment in the retina. Notably, the retinopathy phenotypes of Rpgr KO retinas are rescued by the adeno-associated virus-mediated transfer of pre-trans-splicing molecules, which produce normal Rpgr mRNAs via trans-splicing in the Rpgr KO retinas. This rescue upregulates autophagy through the re-expression of RPGR in KO retinas to accelerate GDP-to-GTP exchange; thus, retinal homeostasis reverts to normal. Taken together, these findings provide an important missing link for coordinating RAB37 GDP-GTP exchange via the RPGR and retinal homeostasis by autophagy regulation.


Autophagy , Carrier Proteins , Eye Proteins , Guanine Nucleotide Exchange Factors , Mice, Knockout , Retina , rab GTP-Binding Proteins , Animals , Retina/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Humans , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , HEK293 Cells , Mice, Inbred C57BL , Guanosine Triphosphate/metabolism , Guanosine Diphosphate/metabolism , Protein Binding
17.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432637

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Mutation, Missense , Neurodevelopmental Disorders , rab GTP-Binding Proteins , Female , Humans , Male , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cell Line , Cilia/metabolism , Cilia/genetics , Cilia/pathology , Cytokinesis/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Loss of Function Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Pedigree , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Models, Molecular , Protein Structure, Tertiary
18.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508314

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Bacterial Proteins , GTPase-Activating Proteins , Myxococcus xanthus , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Enzyme Activation , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Myxococcus xanthus/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/enzymology , Protein Multimerization , Models, Molecular , Protein Structure, Quaternary
19.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38387458

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Brain/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Lipids , Intellectual Disability/genetics , Intellectual Disability/metabolism , rab GTP-Binding Proteins/metabolism
20.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38338709

Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the "inactive" state 1 and the "active" state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras' conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).


Guanine Nucleotide Exchange Factors , Point Mutation , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors/genetics , Guanosine Triphosphate/metabolism , Mutation , ras Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Molecular Dynamics Simulation
...