Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.935
Filter
1.
Nat Commun ; 15(1): 6643, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103320

ABSTRACT

Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here we characterize a G protein variant associated with a rare neurological disorder in humans. GαoK46E has a charge reversal that clashes with the phosphate groups of GDP and GTP. As anticipated, the purified protein binds poorly to guanine nucleotides yet retains wild-type affinity for G protein ßγ subunits. In cells with physiological concentrations of nucleotide, GαoK46E forms a stable complex with receptors and Gßγ, impeding effector activation. Further, we demonstrate that the mutant can be easily purified in complex with dopamine-bound D2 receptors, and use cryo-electron microscopy to determine the structure, including both domains of Gαo, without nucleotide or stabilizing nanobodies. These findings reveal the molecular basis for the first committed step of G protein activation, establish a mechanistic basis for a neurological disorder, provide a simplified strategy to determine receptor-G protein structures, and a method to detect high affinity agonist binding in cells.


Subject(s)
Cryoelectron Microscopy , Guanosine Diphosphate , Guanosine Triphosphate , Mutation , Humans , HEK293 Cells , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Protein Binding , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics
2.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107302

ABSTRACT

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Subject(s)
Guanosine Triphosphate , IMP Dehydrogenase , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/antagonists & inhibitors , Allosteric Regulation , Guanosine Triphosphate/metabolism , Cryoelectron Microscopy , Catalytic Domain , Models, Molecular , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Guanosine Pentaphosphate/metabolism , Inosine Monophosphate/metabolism , Inosine Monophosphate/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism
3.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38960623

ABSTRACT

In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Meiosis , Oocytes , Tubulin , ran GTP-Binding Protein , Animals , Anaphase , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Chromatin/metabolism , Chromosome Segregation , Guanosine Triphosphate/metabolism , Meiosis/physiology , Oocytes/metabolism , Prometaphase , ran GTP-Binding Protein/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
5.
Bioessays ; 46(8): e2400063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975656

ABSTRACT

A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.


Subject(s)
Carbon-Nitrogen Ligases , IMP Dehydrogenase , Animals , Humans , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Cytidine Triphosphate/metabolism , Guanosine Triphosphate/metabolism , IMP Dehydrogenase/metabolism
6.
J Cell Sci ; 137(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39056156

ABSTRACT

Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Guanosine Triphosphate/metabolism , Cell Membrane/metabolism , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Hydrolysis , Golgi Apparatus/metabolism
7.
Proc Natl Acad Sci U S A ; 121(30): e2313609121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012824

ABSTRACT

Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.


Subject(s)
GTP Phosphohydrolases , Membrane Fusion , Animals , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Mice , Membrane Fusion/physiology , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Guanosine Triphosphate/metabolism , Phosphatidylethanolamines/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism
8.
Mol Cell ; 84(15): 2807-2821, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39025071

ABSTRACT

RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.


Subject(s)
Signal Transduction , ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/chemistry , Animals , Protein Binding , Models, Molecular , Structure-Activity Relationship , Protein Conformation , Guanosine Triphosphate/metabolism
9.
Sci Rep ; 14(1): 16043, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992051

ABSTRACT

FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cytoskeletal Proteins , Molecular Dynamics Simulation , Protein Conformation , Staphylococcus aureus , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/chemistry , Bacillus subtilis/metabolism , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Staphylococcus aureus/metabolism , Staphylococcus aureus/chemistry , Protein Stability , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry
10.
Biochemistry ; 63(14): 1752-1760, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38967549

ABSTRACT

The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.


Subject(s)
Guanosine Triphosphate , Static Electricity , Thiocyanates , Hydrolysis , Thiocyanates/chemistry , Thiocyanates/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , Tyrosine/genetics , Mutation , Catalytic Domain , Water/chemistry , Water/metabolism , Models, Molecular
11.
J Cell Biol ; 223(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38847483

ABSTRACT

How nucleocytoplasmic transport (NCT) rates change due to cellular physiology-mediated fluctuations in GTP availability remains unclear. In this issue, Scott et al. (https://doi.org/10.1083/jcb.202308152) demonstrate that cell migration, spreading, and nucleocytoskeletal coupling impact GTP levels, thereby regulating NCT, RNA export, and protein synthesis.


Subject(s)
Active Transport, Cell Nucleus , Energy Metabolism , Humans , Cell Movement , Cell Nucleus/metabolism , Guanosine Triphosphate/metabolism , Protein Biosynthesis
12.
Cancer Gene Ther ; 31(7): 1081-1089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871858

ABSTRACT

Gliomas are the most common primary tumors of the central nervous system, with approximately half of patients presenting with the most aggressive form of glioblastoma. Although several molecular markers for glioma have been identified, they are not sufficient to predict the prognosis due to the extensive genetic heterogeneity within glioma. Our study reveals that the ratio of IMPDH1 to IMPDH2 expression levels serves as a molecular indicator for glioma treatment prognosis. Patients with a higher IMPDH1/IMPDH2 ratio exhibit a worse prognosis, while those with a lower ratio display a more favorable prognosis. We further demonstrate that IMPDH1 plays a crucial role in maintaining cellular GTP/GDP levels following DNA damage compared to IMPDH2. In the absence of IMPDH1, cells experience an imbalance in the GTP/GDP ratio, impairing DNA damage repair capabilities and rendering them more sensitive to TMZ. This study not only introduces a novel prognostic indicator for glioma clinical diagnosis but also offers innovative insights for precise and stratified glioma treatment.


Subject(s)
Glioma , IMP Dehydrogenase , Temozolomide , Humans , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Glioma/mortality , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Temozolomide/therapeutic use , Temozolomide/pharmacology , Prognosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage/drug effects , Female , Male , Guanosine Triphosphate/metabolism
13.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38860981

ABSTRACT

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Subject(s)
Archaeal Proteins , Sulfolobus solfataricus , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Protein Conformation , Binding Sites , RNA, Transfer, Met/chemistry , RNA, Transfer, Met/metabolism
14.
Biochem Biophys Res Commun ; 723: 150199, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38824807

ABSTRACT

Rab3A is a member of the Rab GTPase family involved in synaptic vesicle trafficking. Recent evidence has demonstrated that Rab3A is phosphorylated by leucine-rich repeat kinase 2 (LRRK2) that is implicated in both familial and sporadic forms of Parkinson's disease (PD), and an abnormal increase in Rab3A phosphorylation has been proposed as a cause of PD. Despite the potential importance of Rab3A in PD pathogenesis, its structural information is limited and the effects of bound nucleotides on its biophysical and biochemical properties remain unclear. Here, we show that GDP-bound Rab3A is preferentially phosphorylated by LRRK2 compared with GTP-bound Rab3A. The secondary structure of Rab3A, measured by circular dichroism (CD) spectroscopy, revealed that Rab3A is resistant to heat-induced denaturation at pH 7.4 or 9.0 regardless of the nucleotides bound. In contrast, Rab3A underwent heat-induced denaturation at pH 5.0 at a lower temperature in its GDP-bound form than in its GTP-bound form. The unfolding temperature of Rab3A was studied by differential scanning fluorimetry, which showed a significantly higher unfolding temperature in GTP-bound Rab3A than in GDP-bound Rab3A, with the highest at pH 7.4. These results suggest that Rab3A has unusual thermal stability under physiologically relevant conditions and that bound nucleotides influence both thermal stability and phosphorylation by LRRK2.


Subject(s)
Guanosine Diphosphate , Guanosine Triphosphate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Protein Structure, Secondary , rab3A GTP-Binding Protein , Phosphorylation , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , rab3A GTP-Binding Protein/metabolism , rab3A GTP-Binding Protein/chemistry , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/chemistry , Protein Stability
15.
FEBS Lett ; 598(12): 1491-1505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862211

ABSTRACT

Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Actins , GTPase-Activating Proteins , Animals , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Actins/metabolism , Mice , Cell Surface Extensions/metabolism , Humans , Cell Line , Guanosine Triphosphate/metabolism , Hydrolysis
16.
mBio ; 15(8): e0102124, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38940616

ABSTRACT

The purine nucleotides ATP and GTP are made from the common precursor inosine monophosphate (IMP). Maintaining the correct balance of these nucleotides for optimal cell growth is controlled in part by the enzyme IMP dehydrogenase (IMPDH), which catalyzes the first dedicated step of GTP biosynthesis. The regulation of IMPDH mRNA and protein levels in the yeast S. cerevisiae grown in liquid culture has been studied in some detail, but regulation of IMPDH protein under conditions of cellular crowding on a solid substrate has not been examined. Here, we report real-time, live-cell analysis of the accumulation of the Imd2 isoform of IMPDH in yeast cells forming a monolayer colony in a microfluidic device over a 50-hour time course. We observe two distinct phases of increased Imd2 accumulation: a guanine-insensitive phase early in outgrowth and a guanine-sensitive phase later, when cells become crowded. We show that the IMPDH inhibitor mycophenolic acid enhances both phases of increase. Deletion of a transcription attenuator upstream of the mRNA start site that decreases Imd2 mRNA synthesis in the presence of high GTP increases the baseline level of Imd2 protein 10-fold and abolishes guanine-sensitive but not guanine-insensitive induction. Our results suggest that at least two mechanisms of yeast Imd2 regulation exist, the known GTP-dependent attenuation of RNA polymerase II elongation and a GTP concentration-independent pathway that may be controlled by cell growth state. Live-cell analysis of IMPDH protein levels in a growing yeast colony confirms a known mechanism of regulation and provides evidence for an additional mode of regulation. IMPORTANCE: This study used live-cell microscopy to track changes in the level of a key enzyme in GTP nucleotide biosynthesis, inosine monophosphate dehydrogenase (IMPDH), during growth of a brewers yeast colony over 2 days in a microfluidic device. The results show that feedback regulation via transcription attenuation allows cells to adapt to nutrient limitation in the crowded environs of a yeast colony. They also identify a novel mode of regulation of IMPDH level that is not driven by guanine nucleotide availability.


Subject(s)
Gene Expression Regulation, Fungal , Guanosine Triphosphate , IMP Dehydrogenase , Saccharomyces cerevisiae , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Guanosine Triphosphate/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mycophenolic Acid/pharmacology
18.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719748

ABSTRACT

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Subject(s)
Dyneins , Protein Binding , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Dyneins/metabolism , Dyneins/chemistry , Binding Sites , Kinesins/metabolism , Kinesins/chemistry , Kinesins/genetics , Mutation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Protein Transport , Models, Molecular , Guanosine Triphosphate/metabolism
19.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38758215

ABSTRACT

Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.


Subject(s)
Guanosine Diphosphate , Microtubules , Tubulin , Microtubules/metabolism , Tubulin/metabolism , Tubulin/genetics , Guanosine Diphosphate/metabolism , Animals , Guanosine Triphosphate/metabolism , Humans
20.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776712

ABSTRACT

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Subject(s)
Deoxyguanine Nucleotides , Escherichia coli Proteins , Escherichia coli , Mycobacterium smegmatis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Substrate Specificity , Deoxyguanine Nucleotides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Substitution , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL