Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.769
Filter
1.
Methods Mol Biol ; 2814: 177-194, 2024.
Article in English | MEDLINE | ID: mdl-38954206

ABSTRACT

Biochemical assays are described to analyze signal transduction by the second messenger cGMP in Dictyostelium. The methods include enzyme assays to measure the activity and regulation of cGMP synthesizing guanylyl cyclases and cGMP-degrading phosphodiesterases. In addition, several methods are described to quantify cGMP levels. The target of cGMP in Dictyostelium is the large protein GbpC that has multiple domains including a Roc domain, a kinase domain, and a cGMP-stimulated Ras-GEF domain. A cGMP-binding assay is described to detect and quantify GbpC.


Subject(s)
Cyclic GMP , Dictyostelium , Signal Transduction , Dictyostelium/metabolism , Dictyostelium/genetics , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism , Guanylate Cyclase/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
2.
Sci Adv ; 10(27): eado2365, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959302

ABSTRACT

Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1ß as a key mediator, orchestrating an NF-κB-mediated IL-1ß-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1ß. With the central role of IL-1ß underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1ß antagonists in PRP.


Subject(s)
Antibodies, Monoclonal, Humanized , Interleukin 1 Receptor Antagonist Protein , Interleukin-1beta , Keratinocytes , Pityriasis Rubra Pilaris , Humans , Pityriasis Rubra Pilaris/drug therapy , Pityriasis Rubra Pilaris/pathology , Pityriasis Rubra Pilaris/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Keratinocytes/metabolism , Keratinocytes/drug effects , Keratinocytes/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Male , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Female , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Skin/pathology , Skin/metabolism , Skin/drug effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Interleukin-1/genetics , Middle Aged , Guanylate Cyclase/metabolism , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/genetics , Adult , Signal Transduction/drug effects , Membrane Proteins
3.
Biochemistry ; 63(10): 1246-1256, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38662574

ABSTRACT

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.


Subject(s)
Guanylate Cyclase-Activating Proteins , Guanylate Cyclase , Zebrafish , Guanylate Cyclase-Activating Proteins/metabolism , Guanylate Cyclase-Activating Proteins/genetics , Guanylate Cyclase-Activating Proteins/chemistry , Animals , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Guanylate Cyclase/chemistry , Zebrafish/metabolism , Protein Multimerization , Zebrafish Proteins/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism , Calcium/metabolism , Models, Molecular , Enzyme Activation , Nuclear Magnetic Resonance, Biomolecular , Mutation , Protein Conformation , Retina/metabolism
4.
JAMA Dermatol ; 160(6): 641-645, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598229

ABSTRACT

Importance: There is no US Food and Drug Administration-approved treatment for pityriasis rubra pilaris (PRP), and it is common for patients to fail to experience improvement with several systemic options. Involvement of interleukin (IL) 23 suggests a potential therapeutic target. Objective: To determine whether guselkumab, an IL-23p19 inhibitor, provides clinical improvement for participants with PRP and better understand gene and protein dysregulation in PRP. Design, Setting, and Participants: This single-arm, investigator-initiated nonrandomized trial was conducted from October 2019 to August 2022 at a single-center academic university with participants from 8 states in the US. In total, 14 adults with moderate to severe PRP were enrolled; 12 completed the trial. Age-matched and sex-matched healthy controls provided skin and blood for proteomic and transcriptomic studies. The primary outcome was observed at 24 weeks, and additional follow-up occurred at 36 weeks. Intervention: Guselkumab is a fully human immunoglobulin G1 λ monoclonal antibody that selectively binds and inhibits the p19 subunit of IL-23. Subcutaneous injections were given at the US Food and Drug Administration-approved dosing schedule for psoriasis over a 24-week period. Main Outcomes and Measures: The primary outcome was the mean change in the Psoriasis Area Severity Index (PASI) score at week 24. Secondary outcomes included pruritus, Dermatology Life Quality Index score, clinical response at week 36, and association with transcriptomics and proteomics expression. Results: A per-protocol analysis was performed for the cohort of 4 female and 8 male patients who had a mean (SD) age of 56.5 (18.7) years. The mean improvement in PASI score, pruritus, and Dermatology Life Quality Index score was 61.8% (P < .001), 62.3% (P = .001), and 60.2% (P < .001), respectively. Nine participants (75%) achieved a 50% improvement in PASI. Among these clinical responders, at week 36, 8 of 9 achieved PASI75, and 6 of 9 achieved PASI90. No participants had pathogenic CARD14 gene variations. There was 1 serious adverse event that was not associated with the study drug. Proteomics and gene expression profiles identified dysregulation of a predominance of inflammatory pathways (such as T helper 17 and nuclear factor κ B) in participants with PRP who later responded well to treatment with guselkumab and stronger dysregulation of keratinocyte development pathways in individuals who did not respond to guselkumab. Conclusion and Relevance: The results of this nonrandomized trial suggest that guselkumab has efficacy in treating refractory moderate to severe adult PRP. Trial Registration: ClinicalTrials.gov Identifier: NCT03975153.


Subject(s)
Antibodies, Monoclonal, Humanized , Interleukin-17 , Pityriasis Rubra Pilaris , Signal Transduction , Humans , Pityriasis Rubra Pilaris/drug therapy , Male , Female , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Middle Aged , Adult , Interleukin-17/antagonists & inhibitors , Interleukin-17/metabolism , Signal Transduction/drug effects , Severity of Illness Index , Interleukin-23/antagonists & inhibitors , Treatment Outcome , Interleukin-23 Subunit p19/antagonists & inhibitors , Aged , Injections, Subcutaneous , Guanylate Cyclase/metabolism , Membrane Proteins , CARD Signaling Adaptor Proteins
5.
Clin Exp Pharmacol Physiol ; 51(4): e13851, 2024 04.
Article in English | MEDLINE | ID: mdl-38452757

ABSTRACT

Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.


Subject(s)
Nitric Oxide , Prostatic Hyperplasia , Male , Humans , Mice , Animals , Nitric Oxide/metabolism , Guanylate Cyclase/metabolism , Prostate/metabolism , Mice, Obese , Guanosine Monophosphate/metabolism , Azacitidine/metabolism , Prostatic Hyperplasia/metabolism , Actins/metabolism , Cyclic GMP/metabolism
6.
FEBS J ; 291(10): 2273-2286, 2024 May.
Article in English | MEDLINE | ID: mdl-38437249

ABSTRACT

Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.


Subject(s)
Atrial Natriuretic Factor , Receptors, Atrial Natriuretic Factor , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/chemistry , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/genetics , Animals , Humans , Protein Binding , Crystallography, X-Ray , Elapid Venoms/chemistry , Elapid Venoms/metabolism , Elapid Venoms/genetics , Amino Acid Sequence , Models, Molecular , Guanylate Cyclase/metabolism , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , Natriuretic Peptides/chemistry , Natriuretic Peptides/metabolism , Natriuretic Peptides/genetics , Binding Sites
7.
PLoS One ; 19(3): e0300282, 2024.
Article in English | MEDLINE | ID: mdl-38483883

ABSTRACT

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Subject(s)
Dynorphins , Red Fluorescent Protein , Spinal Cord Dorsal Horn , Mice , Animals , Spinal Cord/metabolism , Mice, Transgenic , Interneurons/metabolism , Posterior Horn Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Guanylate Cyclase/metabolism , Receptors, Cell Surface/metabolism
8.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38508664

ABSTRACT

The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays a key role in the pathogenesis of pulmonary hypertension (PH). Targeted treatments include phosphodiesterase type 5 inhibitors (PDE5i) and sGC stimulators. The sGC stimulator riociguat is approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). sGC stimulators have a dual mechanism of action, enhancing the sGC response to endogenous NO and directly stimulating sGC, independent of NO. This increase in cGMP production via a dual mechanism differs from PDE5i, which protects cGMP from degradation by PDE5, rather than increasing its production. sGC stimulators may therefore have the potential to increase cGMP levels under conditions of NO depletion that could limit the effectiveness of PDE5i. Such differences in mode of action between sGC stimulators and PDE5i could lead to differences in treatment efficacy between the classes. In addition to vascular effects, sGC stimulators have the potential to reduce inflammation, angiogenesis, fibrosis and right ventricular hypertrophy and remodelling. In this review we describe the evolution of treatments targeting the NO-sGC-cGMP pathway, with a focus on PH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Soluble Guanylyl Cyclase/metabolism , Hypertension, Pulmonary/etiology , Nitric Oxide/metabolism , Signal Transduction , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism
9.
Nature ; 626(7999): 626-634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326614

ABSTRACT

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Subject(s)
Evolution, Molecular , Immunotherapy, Adoptive , Lymphoma, T-Cell, Cutaneous , Mutation , T-Lymphocytes , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Cytokines/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Immunotherapy, Adoptive/methods , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/immunology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/therapy , Phosphatidylinositol 3-Kinases , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
10.
Bioorg Chem ; 144: 107170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335755

ABSTRACT

Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.


Subject(s)
Endothelial Cells , Guanylate Cyclase , Humans , Endothelial Cells/metabolism , Enzyme Activation , Guanylate Cyclase/metabolism , Heme , Nitric Oxide/metabolism , Soluble Guanylyl Cyclase/metabolism , Vasodilator Agents , Alkylation
11.
Bull Exp Biol Med ; 176(3): 359-362, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38342810

ABSTRACT

Ion channels activity is regulated through soluble guanylate cyclase (sGC) and adenylate cyclase (AC) pathways, while phosphodiesterases (PDE) control the intracellular levels of cAMP and cGMP. Here we applied RNA transcriptome sequencing to study changes in the gene expression of the sGC, AC, and PDE isoforms in isolated rat ventricular cardiomyocytes under conditions of microgravity and hypergravity. Our results demonstrate that microgravity reduces the expression of sGC isoform genes, while hypergravity increases their expression. For a subset of AC isoforms, gene expression either increased or decreased under both microgravity and hypergravity conditions. The expression of genes encoding 10 PDE isoforms decreased under microgravity, but increased under hypergravity. However, under both microgravity and hypergravity, the gene expression increased for 7 PDE isoforms and decreased for 3 PDE isoforms. Overall, our findings indicate specific gravity-dependent changes in the expression of genes of isoforms associated with the studied enzymes.


Subject(s)
Hypergravity , Weightlessness , Rats , Animals , Phosphoric Diester Hydrolases/metabolism , Soluble Guanylyl Cyclase , Adenylyl Cyclases/genetics , Myocytes, Cardiac/metabolism , Protein Isoforms/genetics , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Cyclic GMP/metabolism
12.
Platelets ; 35(1): 2313359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38353233

ABSTRACT

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Subject(s)
Blood Platelets , Signal Transduction , Humans , Mice , Animals , Biomechanical Phenomena , Blood Platelets/metabolism , Guanylate Cyclase/metabolism , Guanylate Cyclase/pharmacology , Platelet Activation , Cyclic GMP/metabolism , Cyclic GMP/pharmacology , Nitric Oxide/metabolism , Platelet Aggregation
13.
Antioxid Redox Signal ; 40(1-3): 186-205, 2024 01.
Article in English | MEDLINE | ID: mdl-37742108

ABSTRACT

Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.


Subject(s)
Endothelial Cells , Nitric Oxide , Mice , Animals , Endothelial Cells/metabolism , Nitric Oxide/metabolism , Cysteine/metabolism , Guanylate Cyclase/metabolism , Protein Processing, Post-Translational , Homeostasis , Endothelium/metabolism
14.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029963

ABSTRACT

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Subject(s)
Receptors, Guanylate Cyclase-Coupled , Animals , Child , Humans , Mice , Diarrhea , Enterotoxins , Guanylate Cyclase/metabolism , Ligands , Receptors, Enterotoxin/genetics , Receptors, Guanylate Cyclase-Coupled/antagonists & inhibitors , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology
15.
Biol Reprod ; 110(1): 102-115, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37774352

ABSTRACT

In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.


Subject(s)
Guanylate Cyclase , Phosphoric Monoester Hydrolases , Animals , Female , Mice , Rats , Guanylate Cyclase/metabolism , Luteinizing Hormone/metabolism , Meiosis , Oocytes/metabolism , Ovarian Follicle/metabolism , Phosphoric Monoester Hydrolases/metabolism
16.
FEBS J ; 291(6): 1220-1245, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38098267

ABSTRACT

Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.


Subject(s)
CARD Signaling Adaptor Proteins , NF-kappa B , Humans , NF-kappa B/metabolism , HEK293 Cells , CARD Signaling Adaptor Proteins/genetics , Signal Transduction , Guanylate Cyclase/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Apoptosis Regulatory Proteins/metabolism , Protein Kinase C/metabolism , Membrane Proteins/metabolism
17.
Med Oncol ; 41(1): 37, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38155268

ABSTRACT

Non-Hodgkin lymphoma (NHL) is one of the most common cancer types. Deregulated signaling pathways can trigger certain NHL subtypes, including Diffuse Large B-cell lymphoma. NF-ĸB signaling pathway, which is responsible for the proliferation, growth, and survival of cells, has an essential role in lymphoma development. Although different signals control NF-ĸB activation in various lymphoid malignancies, the characteristic one is the CARD11-BCL10-MALT1 (CBM) complex. The CBM complex is responsible for the initiation of adaptive immune response. Our study is focused on the molecular docking of ten polyphenols as potential CARD11-BCL10-MALT1 complex inhibitors, essentially through MALT1 inhibition. Molecular docking was performed by Auto Dock Tools and AutoDock Vina tool, while SwissADME was used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of the ligands. Out of 66 ligands that were used in this study, we selected and visualized five. Selection criteria were based on the binding energy score and position of the ligands on the used protein. 2D and 3D visualizations showed interactions of ligands with the protein. Five ligands are considered potential inhibitors of MALT1, thus affecting NF-ĸB signaling pathway. However, additional in vivo and in vitro studies are required to confirm their mechanism of inhibition.


Subject(s)
CARD Signaling Adaptor Proteins , Lymphoma, Large B-Cell, Diffuse , Humans , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/chemistry , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , CARD Signaling Adaptor Proteins/metabolism , NF-kappa B/metabolism , Guanylate Cyclase/metabolism , Molecular Docking Simulation
18.
Blood ; 142(18): 1543-1555, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37562004

ABSTRACT

A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Mantle-Cell , Adult , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Line, Tumor , Gain of Function Mutation , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Mantle-Cell/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
19.
Br J Pharmacol ; 180(24): 3254-3270, 2023 12.
Article in English | MEDLINE | ID: mdl-37522273

ABSTRACT

BACKGROUND AND PURPOSE: Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH: Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS: We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS: We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.


Subject(s)
Atrial Natriuretic Factor , Guanylate Cyclase , Rats , Animals , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Guanylate Cyclase/metabolism , Rats, Wistar , Receptors, Atrial Natriuretic Factor/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/pharmacology , Cyclic GMP/metabolism
20.
Proc Natl Acad Sci U S A ; 120(28): e2307882120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399424

ABSTRACT

The cardiac natriuretic peptides (NPs) control pivotal physiological actions such as fluid and electrolyte balance, cardiovascular homeostasis, and adipose tissue metabolism by activating their receptor enzymes [natriuretic peptide receptor-A (NPRA) and natriuretic peptide receptor-B (NPRB)]. These receptors are homodimers that generate intracellular cyclic guanosine monophosphate (cGMP). The natriuretic peptide receptor-C (NPRC), nicknamed the clearance receptor, lacks a guanylyl cyclase domain; instead, it can bind the NPs to internalize and degrade them. The conventional paradigm is that by competing for and internalizing NPs, NPRC blunts the ability of NPs to signal through NPRA and NPRB. Here we show another previously unknown mechanism by which NPRC can interfere with the cGMP signaling function of the NP receptors. By forming a heterodimer with monomeric NPRA or NPRB, NPRC can prevent the formation of a functional guanylyl cyclase domain and thereby suppress cGMP production in a cell-autonomous manner.


Subject(s)
Guanylate Cyclase , Receptors, Atrial Natriuretic Factor , Guanylate Cyclase/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Peptide/metabolism , Natriuretic Peptides , Signal Transduction , Atrial Natriuretic Factor/metabolism , Cyclic GMP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...