Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 732, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136084

ABSTRACT

Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterize Ab1303 and Ab1573, heterologously-neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding is observed only when Env trimers are not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures show that both antibodies recognize the CD4bs on Env trimer with an 'occluded-open' conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation includes outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, does not exhibit V1V2 displacement, 4-stranded gp120 bridging sheet, or co-receptor binding site exposure. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggest an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.


Subject(s)
Antibodies, Neutralizing/pharmacology , HIV Antibodies/pharmacology , HIV Infections/drug therapy , HIV-1/immunology , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Binding Sites , CD4 Antigens/immunology , CD4 Antigens/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Design , HIV Antibodies/isolation & purification , HIV Antibodies/therapeutic use , HIV Antibodies/ultrastructure , HIV Infections/immunology , HIV Infections/virology , Humans , Macaca , Molecular Docking Simulation , Protein Binding , Protein Domains , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
Nat Commun ; 13(1): 695, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121758

ABSTRACT

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccines, DNA/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/ultrastructure , Antigens, Viral/immunology , Cell Line, Tumor , Cryoelectron Microscopy , Enzyme-Linked Immunospot Assay , Epitopes/immunology , HEK293 Cells , HIV Antibodies/ultrastructure , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred BALB C , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Vaccination/methods , Vaccines, DNA/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry
3.
Nat Commun ; 12(1): 4817, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376662

ABSTRACT

Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , HIV Antibodies/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Cryoelectron Microscopy/methods , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Glycosylation , HIV Antibodies/chemistry , HIV Antibodies/ultrastructure , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HIV-1/metabolism , Humans , Macaca mulatta , Models, Molecular , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/ultrastructure
4.
Cell Rep ; 31(1): 107488, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268107

ABSTRACT

Antibodies targeting the V1V2 apex of the HIV-1 envelope (Env) trimer comprise one of the most commonly elicited categories of broadly neutralizing antibodies. Structures of these antibodies indicate diverse modes of Env recognition typified by antibodies of the PG9 class and the PGT145 class. The mode of recognition, however, has been unclear for the most potent of the V1V2 apex-targeting antibodies, CAP256-VRC26.25 (named for donor-lineage.clone and referred to hereafter as VRC26.25). Here, we determine the cryoelectron microscopy structure at 3.7 Å resolution of the antigen-binding fragment of VRC26.25 in complex with the Env trimer thought to have initiated the lineage. The 36-residue protruding loop of VRC26.25 displays recognition incorporating both strand-C interactions similar to the PG9 class and V1V2 apex insertion similar to the PGT145 class. Structural elements of separate antibody classes can thus intermingle to form a "combined" class, which in this case yields an antibody of extraordinary potency.


Subject(s)
HIV Antibodies/immunology , HIV Antibodies/ultrastructure , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Cell Line , Cryoelectron Microscopy/methods , HIV Antibodies/metabolism , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunoglobulin Fab Fragments/metabolism , Protein Binding , Protein Multimerization
5.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776278

ABSTRACT

Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.


Subject(s)
AIDS Vaccines/immunology , HIV Envelope Protein gp120/immunology , Antibodies, Monoclonal/immunology , Antibody Formation/immunology , Antibody Specificity/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV Antibodies/ultrastructure , HIV Envelope Protein gp120/ultrastructure , HIV Infections/immunology , HIV-1/immunology , Humans , Immunization, Secondary/methods , Immunoglobulin G/immunology
6.
Nature ; 570(7762): 468-473, 2019 06.
Article in English | MEDLINE | ID: mdl-31142836

ABSTRACT

Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Clone Cells/immunology , HIV-1/chemistry , HIV-1/immunology , Macaca mulatta/immunology , Vaccination , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibody Affinity , Antibody Specificity/immunology , Antigen-Antibody Complex/immunology , B-Lymphocytes/cytology , Cell Proliferation , Clone Cells/cytology , Cloning, Molecular , Cross-Priming/immunology , Cryoelectron Microscopy , Female , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Antibodies/ultrastructure , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Immunodominant Epitopes/ultrastructure , Lymphocyte Activation , Male , Mice , Models, Molecular , Polysaccharides/immunology , Rabbits , Somatic Hypermutation, Immunoglobulin
7.
Elife ; 62017 05 26.
Article in English | MEDLINE | ID: mdl-28548638

ABSTRACT

The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2 Å resolution) and PG9 (11.5 Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Cryoelectron Microscopy , HIV Antibodies/metabolism , HIV Antibodies/ultrastructure , Humans , Immunoglobulin Fab Fragments/metabolism , Protein Binding , env Gene Products, Human Immunodeficiency Virus/metabolism , env Gene Products, Human Immunodeficiency Virus/ultrastructure
8.
Immunity ; 40(5): 669-80, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24768348

ABSTRACT

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.


Subject(s)
Antibodies, Monoclonal/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Binding Sites, Antibody/immunology , Cell Line , Crystallization , Crystallography, X-Ray , Epitopes/immunology , HEK293 Cells , HIV Antibodies/ultrastructure , HIV Envelope Protein gp41/metabolism , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Humans , Molecular Sequence Data , Polysaccharides/immunology , Protein Structure, Quaternary , env Gene Products, Human Immunodeficiency Virus/immunology
9.
Top HIV Med ; 13(1): 9-15, 2005.
Article in English | MEDLINE | ID: mdl-15849368

ABSTRACT

New information on the crystal structures of the HIV and the simian immunodeficiency virus (SIV) envelopes represented one of the scientific highlights of the 12th Annual Conference on Retroviruses and Opportunistic Infections. Numerous presentations also underscored the increasing recognition of the central role of gut-associated lymphoid tissue in AIDS pathogenesis and helped reveal a better understanding of the multiple mechanisms underlying CD4+ T lymphocyte depletion in AIDS. Progress on vaccine development was largely incremental but was strongly influenced by the impact of an expanding array of flow cytometric assays that have revealed significant functional and phenotypic differences in virus-specific CD8+ cells. The interplay between host cellular and humoral immune responses and virus evolution was another prominent theme, and it underscored the challenge facing host immune responses and vaccine developers in attempting to thwart an ever-mutating virus.


Subject(s)
AIDS Vaccines , HIV Infections/immunology , HIV Infections/therapy , Animals , HIV Antibodies/ultrastructure , Humans , Lentiviruses, Primate/immunology , Macaca , Simian Acquired Immunodeficiency Syndrome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL