Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.139
Filter
1.
Biochemistry (Mosc) ; 89(6): 1094-1108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981703

ABSTRACT

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 µM (K562) and 3.5 ± 0.2 µM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.


Subject(s)
Antineoplastic Agents , Drug Design , Fusion Proteins, bcr-abl , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , K562 Cells , HeLa Cells , Pyrimidines/pharmacology , Pyrimidines/chemistry , Molecular Docking Simulation , HL-60 Cells , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Computer Simulation
2.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963046

ABSTRACT

Arsenic trioxide (ATO) is expected to be a chemical drug with antitumor activity against acute promyelocytic leukemia (APL), a type of acute myeloid leukemia. In Japan, its antitumor effects were confirmed in clinical trials for APL, and it has been approved in various countries around the world. However, there have been no reports on ATO's antitumor effects on radioresistant leukemia cells, which can be developed during radiotherapy and in combination with therapeutic radiation beams. The present study sought to clarify the antitumor effect of ATO on APL cells with radiation resistance and determine its efficacy when combined with ionizing radiation (IR). The radiation­resistant HL60 (Res­HL60) cell line was generated by subjecting the native cells to 4­Gy irradiation every week for 4 weeks. The half­maximal inhibitory concentration (IC50) for cell proliferation by ATO on native cell was 0.87 µM (R2=0.67), while the IC50 for cell proliferation by ATO on Res­HL60 was 2.24 µM (R2=0.91). IR exposure increased the sub­G1 and G2/M phase ratios in both cell lines. The addition of ATO resulted in a higher population of G2/M after 24 h rather than 48 h. When the rate of change in the sub­G1 phase was examined in greater detail, the sub­G1 phase in both control cells without ATO significantly increased by exposure to IR at 24 h, but only under the condition of 2 Gy irradiation, it had continued to increase at 48 h. Res­HL60 supplemented with ATO showed a higher rate of sub­G1 change at 24 h; however, 2 Gy irradiation resulted in a decrease compared with the control. There was a significant increase in the ratio of the G2/M phase in cells after incubation with ATO for 24 h, and exposure to 2 Gy irradiation caused an even greater increase. To determine whether the inhibition of cell proliferation and cell cycle disruptions is related to reactive oxygen species (ROS) activity, intracellular ROS levels were measured with a flow cytometric assay. Although the ROS levels of Res­HL60 were higher than those of native cells in the absence of irradiation, they did not change after 0.5 or 2 Gy irradiation. Furthermore, adding ATO to Res­HL60 reduced intracellular ROS levels. These findings provide important information that radioresistant leukemia cells respond differently to the antitumor effect of ATO and the combined effect of IR.


Subject(s)
Arsenic Trioxide , Arsenicals , Cell Proliferation , Leukemia, Promyelocytic, Acute , Oxides , Radiation, Ionizing , Humans , Arsenic Trioxide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/radiotherapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , HL-60 Cells , Arsenicals/pharmacology , Oxides/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation Tolerance/drug effects , Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism
3.
Methods Mol Biol ; 2814: 195-207, 2024.
Article in English | MEDLINE | ID: mdl-38954207

ABSTRACT

Activation of G protein-coupled receptors upon chemoattractant stimulation induces activation of multiple signaling pathways. To fully understand how these signaling pathway coordinates to achieve directional migration of neutrophils, it is essential to determine the dynamics of the spatiotemporal activation profile of signaling components at the level of single living cells. Here, we describe a detailed methodology for monitoring and quantitatively analyzing the spatiotemporal dynamics of 1,4,5-inositol trisphosphate (IP3) in neutrophil-like HL60 cells in response to various chemoattractant fields by applying Förster resonance energy transfer (FRET) fluorescence microscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Inositol 1,4,5-Trisphosphate , Microscopy, Confocal , Microscopy, Fluorescence , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Fluorescence Resonance Energy Transfer/methods , HL-60 Cells , Microscopy, Fluorescence/methods , Microscopy, Confocal/methods , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction , Neutrophils/metabolism
4.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013336

ABSTRACT

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Subject(s)
Antigens, CD34 , Apoptosis , Cell-Derived Microparticles , Fetal Blood , Hematopoietic Stem Cells , Oxidative Stress , Humans , Fetal Blood/cytology , Antigens, CD34/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cell-Derived Microparticles/metabolism , HL-60 Cells , Lipid Peroxidation , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism
5.
Postepy Biochem ; 70(1): 41-51, 2024 05 23.
Article in English | MEDLINE | ID: mdl-39016236

ABSTRACT

Human myeloid leukemia cells (HL-60/S4) exposed to hyperosmotic stress with sucrose undergo dehydration and cell shrinkage. Interphase chromatin and mitotic chromosomes congeal, exhibiting altered phase separation (demixing) of chromatin proteins. To investigate changes in the transcriptome, we exposed HL-60/S4 cells to hyperosmotic sucrose stress (~600 milliOsmolar) for 30 and 60 minutes. We employed RNA-Seq of polyA mRNA to identify genes with increased or decreased transcript levels relative to untreated control cells (i.e., differential gene expression). These genes were examined for over-representation of Gene Ontology (GO) terms.  In stressed cells, multiple GO terms associated with transcription, translation, mitochondrial function and proteosome activity, as well as "replication-dependent histones", were over-represented among genes with increased transcript levels; whereas, genes with decreased transcript levels were over-represented with transcription repressors. The transcriptome profiles of hyperosmotically-stressed cells suggest acquisition of cellular rebuilding, a futile homeostatic response, as these cells are ultimately doomed to a dehydrated death.


Subject(s)
Transcriptome , Humans , Dehydration/genetics , HL-60 Cells , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Osmotic Pressure/physiology , Sucrose/metabolism
6.
Nat Cell Biol ; 26(7): 1062-1076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951708

ABSTRACT

Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.


Subject(s)
Actomyosin , Cell Movement , Cell Polarity , Dictyostelium , ras Proteins , Dictyostelium/metabolism , Dictyostelium/genetics , HL-60 Cells , Actomyosin/metabolism , Humans , ras Proteins/metabolism , ras Proteins/genetics , Macrophages/metabolism , Myosin Type II/metabolism , Myosin Type II/genetics , Neutrophils/metabolism , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Animals , Chemotaxis , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Actins/metabolism , Computer Simulation , Mice , Signal Transduction
7.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930931

ABSTRACT

A series of phenyl ß-carbonyl selenides with o-ester functionality substituted on the oxygen atom with chiral and achiral alkyl groups was synthesized. All compounds are the first examples of this type of organoselenium derivatives with an ester substituent in the ortho position. The obtained derivatives were tested as antioxidants and anticancer agents to see the influence of an ester functionality on the bioactivity of ß-carbonyl selenides by replacing the o-amide group with an o-ester group. The best results as an antioxidant agent were observed for O-((1R,2S,5R)-(-)-2-isopropyl-5-methylcyclohexyl)-2-((2-oxopropyl)selanyl)benzoate. The most cytotoxic derivative against breast cancer MCF-7 cell lines was O-(methyl)-2-((2-oxopropyl)selanyl)benzoate and against human promyelocytic leukemia HL-60 was O-(2-pentyl)-2-((2-oxopropyl)selanyl)benzoate.


Subject(s)
Antineoplastic Agents , Antioxidants , Esters , Organoselenium Compounds , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , MCF-7 Cells , HL-60 Cells , Structure-Activity Relationship , Molecular Structure
8.
Food Chem Toxicol ; 190: 114815, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876381

ABSTRACT

Tumor cells may develop alterations in glycosylation patterns during the initial phase of carcinogenesis. These alterations may be important therapeutic targets for lectins with antitumor action. This work aimed to evaluate the in vitro cytotoxicity of VML on tumor and non-tumor cells (concentration of 25 µg/mL and then microdiluted) and evaluate its in vivo toxicity at different concentrations (1.8, 3.5 and 7.0 µg/mL), using Drosophila melanogaster. Toxicity in D. melanogaster evaluated mortality rate, as well as oxidative stress markers (TBARS, iron levels, nitric oxide levels, protein and non-protein thiols). The cytotoxicity assay showed that VML had cytotoxic effect on leukemic lines HL-60 (IC50 = 3.5 µg/mL), KG1 (IC50 = 18.6 µg/mL) and K562 (102.0 µg/mL). In the toxicity assay, VML showed no reduction in survival at concentrations of 3.5 and 7.0 µg/mL and did not alter oxidative stress markers at any concentrations tested. Cytotoxicity of VML from HL-60, KG1 and K562 cells could arise from the interaction between the lectin and specific carbohydrates of tumor cells. In contrast, effective concentrations of VML against no-tumor cells human keratinocyte - HaCat and in the D. melanogaster model did not show toxicity, suggesting that VML is a promising molecule in vivo studies involving leukemic cells.


Subject(s)
Cell Proliferation , Drosophila melanogaster , Animals , Humans , Drosophila melanogaster/drug effects , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Cell Line, Tumor , HL-60 Cells , Lectins/pharmacology
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 658-662, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926950

ABSTRACT

OBJECTIVE: To investigate the effect of TLK2 expression regulated by miR-21 on proliferation and apoptosis of acute myeloid leukemia cells. METHODS: Seventy patients with AML admitted to our hospital from January 2019 to July 2022 were selected, while 30 patients with iron deficiency anemia were selected as the control group. Bone marrow mononuclear cells (BMMNCs) of the patients were obtained using Ficoll density gradient centrifugation. RT-qPCR was used to determine the expression levels of miR-21 and TLK2 mRNA in BMMNCs. Mimics-miR-21, mimics-NC, inhibitor-miR-21, inhibitor-NC and NC were transfected into HL-60 cells using liposome-mediated transfection technology. CCK-8 method was used to determine the activity of transfected HL-60 cells after treatment with cytarabine. The apoptosis rate of HL-60 transfected cells was determined by TUNEL method. The expression of TLK2 mRNA in HL-60 cells transfected with inhibitor-miR-21 was determined by RT-qPCR. RESULTS: The relative expression levels of miR-21 and TLK2 mRNA in BMMNCs of AML patients were significantly higher than those of controls (both P < 0.05). After HL-60 cells were treated with cytarabine, both the cell activity of inhibitor-miR-21 group and mimics-miR-21 group decreased significantly with the increase of cytarabine concentration (both P < 0.05). However, at each concentration point of cytarabine, the cell activity of inhibitor-miR-21 group was lower than that of control group (P < 0.05), while mimics-miR-21 group was higher than control group (P < 0.05). After HL-60 cells were treated with cytarabine, the apoptosis rate of inhibitor-miR-21 group was significantly increased (P < 0.05), while that of mimics-miR-21 group was significantly decreased (P < 0.05). After HL-60 cells were treated with inhibitor-miR-21, the relative expression of TLK2 mRNA decreased significantly (P < 0.05). CONCLUSION: miR-21 is highly expressed in AML patients, which may promote the apoptosis of AML cells by inhibiting the expression of TLK2.


Subject(s)
Apoptosis , Cell Proliferation , Leukemia, Myeloid, Acute , MicroRNAs , Humans , Cytarabine/pharmacology , HL-60 Cells , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Transfection
10.
Cell Commun Signal ; 22(1): 341, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907250

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells. METHODS: Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood. RESULTS: EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control. CONCLUSIONS: This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.


Subject(s)
Epithelial Cells , Extracellular Vesicles , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/physiology , Extracellular Vesicles/metabolism , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Cytokines/metabolism , HL-60 Cells
11.
J Oleo Sci ; 73(7): 991-999, 2024.
Article in English | MEDLINE | ID: mdl-38945927

ABSTRACT

In this study, we evaluated the cancer cell killing activity of koji mold-derived extracts using several solvents. The koji mold lipid extract (KML) exhibited potent cytotoxicity against a human leukemia cell line. Fractionation of the KML via silica gel chromatography revealed the presence of active components in fraction (Fr.) 6. Cytotoxic effects of Fr. 6 were inhibited by the ferroptosis inhibitors, ferrostatin-1 and SRS11-92, and the iron chelator, deferoxamine. Interestingly, ferroptosis inhibitors failed to prevent the KML-induced cell death. Fr. 6 decreased the expression of glutathione peroxidase 4 (GPx4) and increased the level of peroxidized plasma membrane lipids. Furthermore, Fr. 6 decreased the intracellular glutathione levels. Overall, our results suggest that Fr. 6 included in KML induces ferroptosis in HL-60 cells.


Subject(s)
Ferroptosis , Glutathione , Lipid Peroxidation , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase , Humans , HL-60 Cells , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis/drug effects , Lipid Peroxidation/drug effects , Glutathione/metabolism , Oxidation-Reduction/drug effects , Deferoxamine/pharmacology , Cyclohexylamines/pharmacology , Lipids , Phenylenediamines/pharmacology , Membrane Lipids/metabolism , Iron Chelating Agents/pharmacology
12.
Biol Direct ; 19(1): 49, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910243

ABSTRACT

BACKGROUND: Most patients with acute myeloid leukemia (AML) eventually develop drug resistance, leading to a poor prognosis. Dysregulated long gene non coding RNAs (lincRNAs) have been implicated in chemoresistance in AML. Unfortunately, the effects of lincRNAs which participate in regulating the Adriamycin (ADR) resistance in AML cells remain unclear. Thus, the purpose of this study is to determine LINC00987 function in ADR-resistant AML. METHODS: In this study, ADR-resistant cells were constructed. LINC00987, miRNAs, and HMGA2 mRNA expression were measured by qRT-PCR. P-GP, BCRP, and HMGA2 protein were measured by Western blot. The proliferation was analyzed by MTS and calculated IC50. Soft agar colony formation assay and TUNEL staining were used to analyze cell colony formation and apoptosis. Xenograft tumor experiment was used to analyze the xenograft tumor growth of ADR-resistant AML. RESULTS: We found that higher expression of LINC00987 was observed in AML patients and associated with poor overall survival in AML patients. LINC00987 expression was increased in ADR-resistant AML cells, including ADR/MOLM13 and ADR/HL-60 cells. LINC00987 downregulation reduces ADR resistance in ADR/MOLM13 and ADR/HL-60 cells in vitro and in vivo, while LINC00987 overexpression enhanced ADR resistance in MOLM13 and HL-60 cells. Additionally, LINC00987 functions as a competing endogenous RNA for miR-4458 to affect ADR resistance in ADR/MOLM13 and ADR/HL-60 cells. HMGA2 is a target of miR-4458. LINC00987 knockdown and miR-4458 overexpression reduced HMGA2 expression. HMGA2 overexpression enhanced ADR resistance, which reversed the function of LINC00987 silencing in suppressing ADR resistance of ADR/MOLM13 and ADR/HL-60 cells. CONCLUSIONS: Downregulation of LINC00987 weakens ADR resistance by releasing miR-4458 to deplete HMGA2 in ADR/MOLM13 and ADR/HL-60. Therefore, LINC00987 may act as the therapeutic target for treating chemoresistant AML.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , HMGA2 Protein , Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Doxorubicin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Animals , Cell Line, Tumor , HL-60 Cells , Gene Silencing , Apoptosis , Cell Proliferation , Female
13.
Sci Rep ; 14(1): 13737, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877119

ABSTRACT

Acute promyelocytic leukemia (APL) is characterized by rearrangements of the retinoic acid receptor, RARα, which makes all-trans retinoic acid (ATRA) highly effective in the treatment of this disease, inducing promyelocytes differentiation. Current therapy, based on ATRA in combination with arsenic trioxide, with or without chemotherapy, provides high rates of event-free survival and overall survival. However, a decline in the drug activity, due to increased ATRA metabolism and RARα mutations, is often observed over long-term treatments. Furthermore, dedifferentiation can occur providing relapse of the disease. In this study we evaluated fenretinide, a semisynthetic ATRA derivative, encapsulated in nanomicelles (nano-fenretinide) as an alternative treatment to ATRA in APL. Nano-fenretinide was prepared by fenretinide encapsulation in a self-assembling phospholipid mixture. Physico-chemical characterization was carried out by dinamic light scattering and spectrophotometry. The biological activity was evaluated by MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Nano-fenretinide induced apoptosis in acute promyelocytic leukemia cells (HL60) by an early increase of reactive oxygen species and a mitochondrial potential decrease. The fenretinide concentration that induced 90-100% decrease in cell viability was about 2.0 µM at 24 h, a concentration easily achievable in vivo when nano-fenretinide is administered by oral or intravenous route, as demonstrated in previous studies. Nano-fenretinide was effective, albeit at slightly higher concentrations, also in doxorubicin-resistant HL60 cells, while a comparison with TK6 lymphoblasts indicated a lack of toxicity on normal cells. The results indicate that nano-fenretinide can be considered an alternative therapy to ATRA in acute promyelocytic leukemia when decreased efficacy, resistance or recurrence of disease emerge after protracted treatments with ATRA.


Subject(s)
Apoptosis , Fenretinide , Leukemia, Promyelocytic, Acute , Humans , Fenretinide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/metabolism , HL-60 Cells , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Micelles , Membrane Potential, Mitochondrial/drug effects
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 670-678, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926952

ABSTRACT

OBJECTIVE: To investigate the clinical significance, functional role and potential downstream mechanism of USP5 in acute myeloid leukemia (AML). METHODS: The expression of USP5 in AML and normal tissues and its correlation with patients' survival were analyzed based on TCGA database. USP5 was knocked down and overexpressed in Jurkat and HL-60 cells using lentivirus. USP5 mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Cell proliferation and growth were measured by CCK-8 and methylcellulose colony-forming assay. Flow cytometry was used to analyze cell cycle and apoptosis. RESULTS: USP5 was highly expression in AML compared with normal tissues. Up-regulation of USP5 was negatively correlated with the survival of AML patients. USP5 knockdown and overexpression inhibited and promoted the proliferation and colony growth of AML cells, respectively. Cell cycle arrest and apoptosis were induced in USP5 knockdown Jurkat and HL-60 cells. Furthermore, USP5 knockdown inhibited the phosphrylation of AKT, mTOR and 4EBP1. CONCLUSION: Overexpression of USP5 predicts poor survival of AML patients. Targeting USP5 suppresses AKT/mTOR/4EBP1 signaling and reduces the proliferation and growth of AML cells.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis , Cell Proliferation , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , HL-60 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Jurkat Cells , Ubiquitin-Specific Proteases/metabolism , Clinical Relevance
15.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731835

ABSTRACT

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Subject(s)
Leukemia, Myeloid, Acute , Systems Biology , Tretinoin , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tretinoin/pharmacology , Systems Biology/methods , HL-60 Cells , Gene Expression Profiling , K562 Cells , Drug Discovery/methods , Transcriptome , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
Med Oncol ; 41(6): 149, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739199

ABSTRACT

Because of the high biocompatibility, self-assembly capability, and CD71-mediated endocytosis, using human heavy chain ferritin (HFn) as a nanocarrier would greatly increase therapeutic effectiveness and reduce possible adverse events. Anti-PD-L1 siRNA can downregulate the level of PD-L1 on tumor cells, resulting in the activation of effector T cells against leukemia. Therefore, this study aimed to produce the tumor-targeting siPD-L1/HFn nanocarrier. Briefly, the HFn coding sequence was cloned into a pET-28a, and the constructed expression plasmid was subsequently transformed into E. coli BL21. After induction of Isopropyl ß-D-1-thiogalactopyranoside (IPTG), HFn was purified with Ni-affinity chromatography and dialyzed against PBS. The protein characteristics were analyzed using SDS-PAGE, Western Blot, and Dynamic light scattering (DLS). The final concentration was assessed using the Bicinchoninic acid (BCA) assay. The encapsulation was performed using the standard pH system. The treatment effects of siPD-L1/HFn were carried out on HL-60 and K-562 cancer cell lines. The RT-PCR was used to determine the mRNA expression of PD-L1. The biocompatibility and excretion of siPD-L1/HFn have also been evaluated. The expression and purity of HFn were well verified through SDS-PAGE, WB, and DLS. RT-PCR analyses also showed significant siRNA-mediated PD-L1 silencing in both HL-60 and K-562 cells. Our study suggested a promising approach for siRNA delivery. This efficient delivery system can pave the way for the co-delivery of siRNAs and multiple chemotherapies to address the emerging needs of cancer combination therapy.


Subject(s)
Apoferritins , B7-H1 Antigen , Leukemia, Myeloid, Acute , RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/antagonists & inhibitors , Apoferritins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , HL-60 Cells , K562 Cells , Cell Line, Tumor , Nanoparticles/chemistry
17.
Eur J Med Chem ; 273: 116507, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38776806

ABSTRACT

Careful recruitment of the components of the HDAC inhibitory template culminated in veliparib-based anilide 8 that elicited remarkable cell growth inhibitory effects against HL-60 cell lines mediated via dual modulation of PARP [(IC50 (PARP1) = 0.02 nM) and IC50 (PARP2) = 1 nM)] and HDACs (IC50 value = 0.05, 0.147 and 0.393 µM (HDAC1, 2 and 3). Compound 8 downregulated the expression levels of signatory biomarkers of PARP and HDAC inhibition. Also, compound 8 arrested the cell cycle at the G0/G1 phase and induced autophagy. Polymer nanoformulation (mPEG-PCl copolymeric micelles loaded with compound 8) was prepared by the nanoprecipitation technique. The mPEG-PCL diblock copolymer was prepared by ring-opening polymerization method using stannous octoate as a catalyst. The morphology of the compound 8@mPEG-PCL was examined using TEM and the substance was determined to be monodispersed, spherical in form, and had an average diameter of 138 nm. The polymer nanoformulation manifested pH-sensitive behaviour as a greater release of compound 8 was observed at 6.2 pH as compared to 7.4 pH mimicking physiological settings. The aforementioned findings indicate that the acidic pH of the tumour microenvironment might stimulate the nanomedicine release which in turn can attenuate the off-target effects precedentially claimed to be associated with HDAC inhibitors.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Polyethylene Glycols , Humans , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , HL-60 Cells , Nanoparticles/chemistry , Molecular Structure , Micelles , Structure-Activity Relationship , Dose-Response Relationship, Drug , Polyesters/chemistry , Polyesters/pharmacology , Polyesters/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis
18.
J Biol Inorg Chem ; 29(3): 331-338, 2024 04.
Article in English | MEDLINE | ID: mdl-38717473

ABSTRACT

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Subject(s)
Antineoplastic Agents , Lanthanoid Series Elements , Picolinic Acids , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Male , Drug Screening Assays, Antitumor , Models, Molecular , HL-60 Cells , Crystallography, X-Ray , Molecular Structure , Cell Line, Tumor , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Survival/drug effects , Cell Proliferation/drug effects
19.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38820662

ABSTRACT

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Subject(s)
Arthritis, Gouty , Extracellular Traps , Flavonols , Interleukin-8 , Neutrophils , Receptors, Purinergic P2 , Extracellular Traps/drug effects , Humans , Interleukin-8/metabolism , Receptors, Purinergic P2/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Arthritis, Gouty/drug therapy , HL-60 Cells , Flavonols/pharmacology , Animals , Uric Acid/pharmacology , Receptors, Interleukin-8B/metabolism , Male , Histones/metabolism , Anti-Inflammatory Agents/pharmacology , Mice
20.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786019

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.


Subject(s)
Cell Differentiation , Myeloid-Derived Suppressor Cells , Neutrophils , Proteomics , Humans , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/cytology , Neutrophils/metabolism , Neutrophils/cytology , Proteomics/methods , HL-60 Cells , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL