Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.773
1.
Arch Dermatol Res ; 316(6): 318, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822862

BACKGROUND: One common problem in various patient groups is excessive hair loss on the head. One such group is people struggling with hypothyroidism. The market for preparations for hair growth and hair loss prevention includes betulin. PURPOSE: This pilot study investigated its effect on hair loss in hypothyroid patients. STUDY DESIGN: The study included a group of hypothyroid patients and a control group of people without hypothyroidism. Participants were randomly divided into a group taking placebo and betulin. METHODS: Results were investigated using photographic assessment of hair, trichoscopy and subjective evaluation of participants. CONCLUSION: The study did not conclusively prove that betulin would contribute to the inhibition of hair loss or regrowth.


Hair , Hypothyroidism , Triterpenes , Humans , Pilot Projects , Triterpenes/administration & dosage , Triterpenes/pharmacology , Female , Adult , Hypothyroidism/drug therapy , Hair/growth & development , Hair/drug effects , Middle Aged , Male , Alopecia/drug therapy , Plant Oils/administration & dosage , Treatment Outcome , Betulinic Acid
2.
Eur J Med Res ; 29(1): 270, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704575

BACKGROUND: This study aims to investigate the effects of a conditioned medium (CM) from human umbilical cord mesenchymal stem cells (HuMSCs) cultivated in gelatin sponge (GS-HuMSCs-CM) on hair growth in a mouse model. METHODS: CM was collected from the HuMSCs cultivated in a monolayer or in a gelatin sponge. Vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF) levels in CMs were measured by enzyme-linked immunosorbent assays (ELISAs). A hair loss model by a C57 BL/6J mouse was prepared. The effects of GS-HuMSCs-CM and HuMSCs on hair regrowth in mice were investigated by intradermal injection in the depilated back skin with normal saline (NS) as the control. The time for hair regrowth and full covering in depilated areas was observed, and the hair growth was evaluated histologically and by grossly measuring hair length and diameter. RESULTS: Compared with monolayer cultured cells, the three-dimensional (3D) culture of HuMSCs in gelatin sponge drastically increased VEGF, IGF-1, KGF, and HGF production. GS-HuMSCs-CM and HuMSCs injection both promoted hair regeneration in mice, while GS-HuMSCs-CM presented more enhanced effects in hair length, hair diameter, and growth rate. GS-HuMSCs-CM significantly promoted angiogenesis in injected skin areas, which might also contribute to faster hair regrowth. CONCLUSION: GS-HuMSCs-CM exerted significant effects on inducing hair growth and promoted skin angiogenesis in C57BL/6J mice.


Hair , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Umbilical Cord , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Culture Media, Conditioned/pharmacology , Mice , Umbilical Cord/cytology , Hair/growth & development , Hair/drug effects , Insulin-Like Growth Factor I/metabolism , Vascular Endothelial Growth Factor A/metabolism , Hepatocyte Growth Factor/metabolism , Gelatin/chemistry , Tissue Scaffolds/chemistry , Mice, Inbred C57BL , Cells, Cultured , Fibroblast Growth Factor 7/metabolism
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 626-632, 2024 May 15.
Article Zh | MEDLINE | ID: mdl-38752252

Objective: To summarize the dynamic and synchronized changes between the hair cycle and dermal adipose tissue as well as the impact of dermal adipose tissue on hair growth, and to provide a new research idea for the clinical treatment of hair loss. Methods: An extensive review of relevant literature both domestic and international was conducted, analyzing and summarizing the impact of dermal adipose precursor cells, mature dermal adipocytes, and the processes of adipogenesis in dermal adipose tissue on the transition of hair cycle phases. Results: Dermal adipose tissue is anatomically adjacent to hair follicles and closely related to the changes in the hair cycle. The proliferation and differentiation of dermal adipose precursor cells promote the transition of hair cycle from telogen to anagen, while mature adipocytes can accelerate the transition from anagen to catagen of the hair cycle by expressing signaling molecules, with adipogenesis in dermal adipose tissue and hair cycle transition signaling coexistence. Conclusion: Dermal adipose tissue affects the transition of the hair cycle and regulates hair growth by secreting various signaling molecules. However, the quantity and depth of existing literature are far from sufficient to fully elucidate its prominent role in regulating the hair cycle, and the specific regulatory mechanisms needs to be further studied.


Adipocytes , Adipogenesis , Adipose Tissue , Cell Differentiation , Hair Follicle , Hair , Humans , Adipose Tissue/metabolism , Adipose Tissue/cytology , Hair Follicle/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Hair/growth & development , Hair/metabolism , Signal Transduction , Dermis/metabolism , Dermis/cytology , Animals , Cell Proliferation , Alopecia/metabolism
4.
Pak J Pharm Sci ; 37(2): 399-404, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767107

Hair loss (alopecia) continues to be an issue for both sexes. There are multiple ways to reduce the effects of alopecia, one of which is topical minoxidil (MXD). This study aimed to test the effects of minoxidil nanoliposomes (MXD-NLs) on the hair of mice, compared with free MXD and to examine the disinfectant ability of MXD-NLs toward scalp bacteria. To test the study hypothesis, MXD-NLs and free MXD were prepared. Mouse hair was shaved prior to the experiment. MXD-NLs, free MXD and their vehicles were applied for 15 days. In addition, dermal swabs were used to isolate scalp bacteria and test the inhibitory effect of pretreated media with the two formulations and their vehicles. The results revealed that hair growth in the MXD-NLs -treated group (0.65±0.1cm) was higher than that in the free MXD -treated group (0.53±0.2cm). In addition, MXD-NLs treated media reduced the number of scalp bacteria (p=0.0456) compared with free MXD. These results reveal a novel formulation of MXD with faster hair growth properties and a better disinfectant effect than free MXD. This study can help future researchers to expand and develop MXD-NLs.


Alopecia , Hair , Liposomes , Minoxidil , Scalp , Minoxidil/pharmacology , Animals , Hair/growth & development , Hair/drug effects , Hair/microbiology , Scalp/drug effects , Mice , Alopecia/drug therapy , Alopecia/microbiology , Nanoparticles , Disinfectants/pharmacology , Male , Female
5.
BMC Genomics ; 25(1): 498, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773419

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Hair , Protein Isoforms , RNA-Seq , Skin , Transcriptome , Animals , Cattle/genetics , Skin/metabolism , Hair/metabolism , Hair/growth & development , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Gene Expression Profiling , Alternative Splicing , Sequence Analysis, RNA
6.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809465

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
7.
Genes (Basel) ; 15(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38790256

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Computational Biology , Mice, Inbred C57BL , Animals , Mice , Female , Computational Biology/methods , Filaggrin Proteins , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Oligonucleotide Array Sequence Analysis/methods , Skin/metabolism , Skin/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Minoxidil/pharmacology , Gene Expression Profiling/methods
8.
Molecules ; 29(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38792149

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Alopecia , Hair , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alopecia/drug therapy , Alopecia/prevention & control , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Hair/drug effects , Hair/growth & development , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects
9.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775976

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Alopecia , Hair Follicle , Hair , Transcription Factors , Animals , Male , Mice , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/growth & development , Humans , Alopecia/drug therapy , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred BALB C , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/administration & dosage , Mice, Nude , Mice, Hairless , Disease Models, Animal , Glucocorticoids/pharmacology
10.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738816

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Hair , Wnt Signaling Pathway , Animals , Mice , Hair/metabolism , Hair/growth & development , Hair/chemistry , Humans , Wnt Signaling Pathway/drug effects , Biotransformation , Fermentation , beta Catenin/metabolism , beta Catenin/genetics , Male , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects , Apoptosis/drug effects , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/growth & development
11.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739468

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Alopecia , Hair Follicle , Indoles , Polymers , Quercetin , Reactive Oxygen Species , Alopecia/drug therapy , Alopecia/pathology , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Hair Follicle/drug effects , Hair Follicle/growth & development , Polymers/chemistry , Mice , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Humans , Hair/drug effects , Hair/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Disease Models, Animal , Male
12.
J Ethnopharmacol ; 330: 118227, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38685364

ETHNOPHARMACOLOGICAL RELEVANCE: Androgenic alopecia (AGA) is the most prevalent form of hair loss in clinical practice and affects the physical and psychological well-being of adolescents. Paeonia lactiflora Pallas (PL), which is widely used in traditional Chinese medicine, enhances blood function and promotes hair growth, and ellagic acid (EA), a polyphenol in PL extract, shows strong antioxidant, anti-aging, and anti-inflammatory properties and also plays a role in the treatment of various skin conditions. However, its role and mechanism of action in AGA remain unclear. AIM OF THE STUDY: To determine whether EA can rescue slow hair regeneration by regulating dihydrotestosterone (DHT)-induced ferroptosis in AGA mice and clarify the effect of EA on DHT-induced ferroptosis in dermal papilla cells (DPCs). MATERIALS AND METHODS: Male C57BL/6 mice were used to establish a DHT-induced AGA mouse model, whereas DPCs were used to establish a DHT-induced cellular model. Thereafter, we investigated the therapeutic mechanism of action of EA via immunofluorescence, western blot analysis, immunohistochemistry, electron microscopy, and molecular docking. RESULTS: EA stimulated hair regeneration in mice and reversed DHT-induced increases in iron content, lipid peroxidation, and DHT-induced mitochondrial dysfunction by activating the Wnt/ß-catenin signaling pathway. Further, ß-catenin knockdown suppressed the inhibitory effect of EA on DHT-induced ferroptosis in DPCs. CONCLUSION: EA inhibits DHT-induced ferroptosis and promotes hair regrowth in mice by activating the Wnt/ß-catenin signaling pathway. Thus, it has potential for use as a treatment option for AGA.


Alopecia , Dihydrotestosterone , Ellagic Acid , Ferroptosis , Hair , Mice, Inbred C57BL , Regeneration , Wnt Signaling Pathway , Animals , Male , Wnt Signaling Pathway/drug effects , Ellagic Acid/pharmacology , Ferroptosis/drug effects , Dihydrotestosterone/pharmacology , Alopecia/drug therapy , Alopecia/chemically induced , Mice , Regeneration/drug effects , Hair/drug effects , Hair/growth & development , beta Catenin/metabolism
13.
Cell Signal ; 119: 111167, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604341

Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.


Autophagy , Hair , Animals , Mice , Humans , Autophagy/drug effects , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/cytology , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Dermis/cytology , Dermis/drug effects , Transient Receptor Potential Channels/metabolism , Calcium Signaling/drug effects
14.
In Vivo ; 38(3): 1199-1202, 2024.
Article En | MEDLINE | ID: mdl-38688645

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Hair Follicle , Hair , Homocysteine , Methionine , Animals , Methionine/deficiency , Methionine/metabolism , Methionine/administration & dosage , Mice , Hair/growth & development , Hair/metabolism , Homocysteine/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Alopecia/metabolism , Alopecia/etiology , Alopecia/pathology , Disease Models, Animal , Diet , Keratinocytes/metabolism
15.
Biomed Pharmacother ; 174: 116503, 2024 May.
Article En | MEDLINE | ID: mdl-38565060

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Alopecia , Antlers , Bone Morphogenetic Protein 4 , Hair Follicle , Hair , Animals , Antlers/chemistry , Alopecia/drug therapy , Alopecia/pathology , Hair Follicle/drug effects , Hair Follicle/metabolism , Mice , Male , Bone Morphogenetic Protein 4/metabolism , Hair/drug effects , Hair/growth & development , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Tissue Extracts/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Regeneration/drug effects , Deer , Smad5 Protein/metabolism
17.
J Cosmet Dermatol ; 23(5): 1663-1668, 2024 May.
Article En | MEDLINE | ID: mdl-38321929

BACKGROUND: Transepidermal drug delivery is a novel therapeutic technique to boost efficacy of topical drugs. AIM: In this clinical trial we evaluate the efficacy of the combination of fractional carbon dioxide (FCO2) laser and bimatoprost solution compared to bimatoprost alone in the treatment of alopecia areata. METHODS: This is a prospective intra-patient comparative randomized clinical trial on 20 patients with alopecia areata. In each participant two patches were chosen to randomly receive either topical 0.03% bimatoprost solution (twice a day for 12 weeks) alone or in combination with FCO2 laser (every 2 weeks for 12 weeks). Then response to treatment was evaluated by the measurement of the severity of alopecia tool score system (SALT) score, percentage of hair regrowth, physician assessment and patients' satisfaction. RESULTS: SALT score was reduced significantly during treatment sessions and after a 3-month follow-up in both treatment groups (p = 0.000). The mean percentage of improvement in SALT score in the combination therapy and monotherapy groups were 46.43 ± 4.35% and 21.16 ± 4.06% at the end of the study and 46.42 ± 5.75% and16.11 ± 3.10% at the end of the follow-up period, respectively (p = 0.000). A general linear model of two-way analysis demonstrated a significantly superior outcome in the combination therapy group compared to the monotherapy group during time (F1.6, 13.2 = 43.8. p = 0.000). CONCLUSION: Fractional ablative laser can be considered as an assistant method for enhancing of efficacy of topical drugs especially in refractory cases of patchy alopecia areata.


Alopecia Areata , Bimatoprost , Lasers, Gas , Patient Satisfaction , Humans , Alopecia Areata/drug therapy , Alopecia Areata/therapy , Bimatoprost/administration & dosage , Adult , Female , Male , Lasers, Gas/therapeutic use , Prospective Studies , Combined Modality Therapy/methods , Young Adult , Treatment Outcome , Severity of Illness Index , Administration, Cutaneous , Middle Aged , Adolescent , Hair/drug effects , Hair/growth & development , Drug Delivery Systems/methods
18.
Dermatol Surg ; 50(5): 446-452, 2024 May 01.
Article En | MEDLINE | ID: mdl-38376068

BACKGROUND: Platelet-rich plasma (PRP) and its combined therapeutic modalities have catalyzed new possibilities in dermatology; however, limitations in evidence and lack of consensus remain among clinicians regarding optimal composition, protocol, technique, and application. OBJECTIVE: To provide an update and analysis of the evidence for PRP in hair restoration and skin rejuvenation through review of recent available data, highlighting controversies and expert insights to guide future studies, and stimulate discourse and innovations benefitting patients. METHODS: A structured review and expert analysis of PubMed publications before October 2023, with a focus on recent literature from January 2020 through October 2023. RESULTS AND CONCLUSION: Growing literature supports the utility and benefits of PRP and related autologous products for applications for skin and hair, with strongest evidence for androgenetic alopecia and skin rejuvenation. However, this is limited by lack of consensus regarding best practices and protocols. Randomized, controlled trials with uniform metrics comparing outcomes of various compositions of autologous blood products, preparation methods, dosimetry, and frequency of treatments are still required. This will allow the medical discourse to grow beyond the realm of expert opinion into consensus, standardization, and more wide spread adoption of best practices that will benefit patients.


Alopecia , Platelet-Rich Plasma , Rejuvenation , Humans , Alopecia/therapy , Cosmetic Techniques , Skin Aging , Hair/growth & development , Hair/transplantation
19.
Adv Mater ; 36(21): e2311459, 2024 May.
Article En | MEDLINE | ID: mdl-38346345

Hair loss is characterized by the inability of hair follicles (HFs) to enter the telogen-anagen transition (TAT) and lack of de novo HFs. Current pharmaceutical therapies and surgical modalities have been largely limited to regulating hair regrowth efficiently without side effects and lacking treatment compliance. Here, this work proposes a materiobiomodulation therapy (MBMT), wherein polydopamine (PDA) nanoparticles with redox activity can be modulated to have a stoichiometric ROS (H2O2) donating ability. These nanoparticles can intracellularly deliver ROS with high-efficiency via the clathrin-dependent endocytosis process. Utilizing homozygote transgenic HyPerion (a genetically-encoded H2O2 biosensor) mice, this work also achieves in vivo dynamic monitoring of intracellular H2O2 elevation induced by ROS donators. Subcutaneous administration with ROS donators results in rapid onset of TAT and subsequent hair regrowth with a specific ROS "hormesis effect." Mechanistically, ROS activate ß-catenin-dependent Wnt signaling, upregulating hair follicle stem cell expression. This work further develops a microneedles patch for transdermal ROS delivery, demonstrating long-term, low-dose ROS release. Unlike photobiomodulation therapy (PBMT), MBMT requires no external stimuli, providing a convenient and efficient approach for clinical hair loss treatment. This material-HF communication implicates new avenues in HF-related diseases, achieving targeted ROS delivery with minimal side effects.


Hair Follicle , Indoles , Nanoparticles , Polymers , Reactive Oxygen Species , Animals , Hair Follicle/metabolism , Hair Follicle/drug effects , Mice , Indoles/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Alopecia/therapy , Hair/growth & development , Hair/drug effects , Wnt Signaling Pathway/drug effects , Humans , Mice, Transgenic
20.
J Med Food ; 27(5): 449-459, 2024 May.
Article En | MEDLINE | ID: mdl-38421731

Although hair loss contributes to various social and economic, research methods for material development are currently limited. In this study, we established a research model for developing materials for hair growth through the regulation of ß-catenin. We confirmed that 100 nM tegatrabetan (TG), a ß-catenin inhibitor, decreased the proliferation of human hair follicle dermal papilla cells (HFDPCs) at 72 h. In addition, TG-induced apoptosis suppressed the phosphorylation of GSK-3ß and Akt, translocation of ß-catenin from the cytosol to the nucleus, and the expression of cyclin D1. Interestingly, TG significantly increased the G2/M arrest in HFDPCs. Subcutaneous injection of TG suppressed hair growth and the number of hair follicles in C57BL/6 mice. Moreover, TG inhibited the expression of cyclin D1, ß-catenin, keratin 14, and Ki67. These results suggest that TG-induced inhibition of hair growth can be a promising model for developing new materials for enhancing ß-catenin-mediated hair growth.


Cell Proliferation , Cyclin D1 , Glycogen Synthase Kinase 3 beta , Hair Follicle , Hair , Mice, Inbred C57BL , Signal Transduction , beta Catenin , beta Catenin/metabolism , Animals , Humans , Hair Follicle/growth & development , Hair Follicle/metabolism , Hair Follicle/drug effects , Mice , Signal Transduction/drug effects , Cell Proliferation/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cyclin D1/metabolism , Cyclin D1/genetics , Apoptosis/drug effects , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation
...