Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.215
Filter
2.
Cardiovasc Res ; 120(9): 1011-1023, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38776406

ABSTRACT

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs), such as phosphodiesterase 4B (PDE4B), has recently been described to effectively prevent heart failure (HF) in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here, we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload-induced HF in mice by acting on and restoring altered cAMP compartmentation in distinct subcellular microdomains. METHODS AND RESULTS: HF was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3, or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis, and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentation in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts, and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human-induced pluripotent stem-derived cardiomyocytes with the A2254V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSION: Our data indicate that gene therapy with phosphodiesterases can prevent HF including associated cardiac remodelling and arrhythmias by restoring altered cAMP compartmentation in functionally relevant subcellular microdomains.


Subject(s)
Cyclic AMP , Cyclic Nucleotide Phosphodiesterases, Type 2 , Cyclic Nucleotide Phosphodiesterases, Type 4 , Disease Models, Animal , Genetic Therapy , Heart Failure , Myocytes, Cardiac , Ryanodine Receptor Calcium Release Channel , Animals , Cyclic AMP/metabolism , Heart Failure/enzymology , Heart Failure/genetics , Heart Failure/therapy , Heart Failure/physiopathology , Heart Failure/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Humans , Mice, Inbred C57BL , Male , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Ventricular Remodeling , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/metabolism , Second Messenger Systems/drug effects , Ventricular Function, Left , Calcium Signaling , Phosphorylation , Heart Rate
4.
Rev. chil. cardiol ; 42(3): 143-152, dic. 2023. tab, ilus, graf
Article in Spanish | LILACS | ID: biblio-1529981

ABSTRACT

Antecedentes: La ECA2 ha mostrado ser un regulador esencial de la funcionalidad cardíaca. En un modelo experimental de insuficiencia cardíaca (IC) con Fier, modelo de coartación de aorta (COA), se encontró activación de la vía Rho-kinasa. La inhibición de esta vía con fasudil no mejoró el remodelado cardíaco ni la disfunción sistólica. Se desconoce en este modelo, si el deterioro de la función cardíaca y activación de la vía rho-kinasa se asocia con una disminución de la ECA2 cardíaca y si la inhibición de Rho-kinasa tiene un efecto sobre la expresión de ECA2. Objetivo: Nuestro objetivo es determinar si en la falla cardaca experimental por coartación aórtica, los niveles proteicos de ECA2 en el miocardio se asocian a disfunción sistólica y cual es su interacción con la actividad de ROCK en el miocardio. Métodos: Ratones C57BL6J machos de 7-8 semanas se randomizaron en 3 grupos experimentales. Grupo COA por anudación de la aorta + vehículo; Grupo COA + Fasudil (100 mg/Kg día) por bomba osmótica desde la semana 5 post-cirugía; y grupo control o Sham. Se determinaron las dimensiones y función cardíaca por ecocardiografía. Posterior a la eutanasia, se determinaron los niveles de ECA2 del VI por Western-blot y actividad de la Rho-kinasa Resultados: En los grupos COA+vehículo y COA-FAS hubo deterioro de la función cardíaca, reflejada por la reducción de la FE (47,9 ± 1,53 y 45,5 ± 2,10, p < 0,05, respectivamente) versus SHAM (68,6 ± 1,19). Además, aumentaron las dimensiones cardíacas y hubo desarrollo de hipertrofia (0,53 ± 0,02 / 0,53 ± 0,01, p < 0,05) medida por aumento de la masa cardíaca relativa respecto del grupo SHAM (0,40 ± 0,01). En los grupos COA+vehículo y COA-FAS se encontró una disminución significativa del 35% en la expresión de ECA2 cardíaca respecto al grupo control. Conclusiones: La disfunción sistólica por coartación aórtica se asocia con aumento de la actividad de Rho-kinasa y significativa disminución de la expresión de ECA2. La inhibición de Rho-kinasa no mejoró el remodelado cardíaco, la disfunción sistólica y tampoco modificó los niveles de ECA2 cardíaca.


Background: ACE2 has been described as an essential regulator of cardiac function. In an experimental model of heart failure (HF) and heart failure reduced ejection fraction (HFrEF), the aortic coarctation (COA) model, activation of the Rho-kinase pathway of cardiac remodeling was found. Inhibition of this pathway did not improve cardiac remodeling or systolic ventricular dysfunction. It is unknown in this model whether the impairment of cardiac function and activation of the rho-kinase pathway is associated with a decrease in ACE2 and whether rho-kinase inhibition has an effect on ACE2 expression. Objective: To determine if in experimental heart failure due to aortic coarctation, ACE2 protein levels in the myocardium are associated with systolic dysfunction and what is its interaction with ROCK activity in the myocardium. Methods: Male C57BL6J mice aged 7-8 weeks were divided into 3 groups and anesthetized: One group underwent COA+ vehicle; A second group COA + Fasudil (100 mg/Kg/d) by osmotic pump from week 5 post-surgery and; the third group, control(SHAM). Echocardiograms were performed to determine cardiac dimensions and systolic function. Rats were then euthanized. Ventricular expression of ACE2, activity of the Rho-kinase pathway by MYPT-1 phosphorylation, relative cardiac mass, area and perimeter of cardiomyocytes were determined by Western blot. Results: In both COA+vehicle and COA+FAS groups there was deterioration of cardiac function, reflected in the reduction of EF (47.9 ± 1.53 and 45.5 ± 2.10, p < 0.05, respectively) versus the SHAM group (68.6 ± 1.19). In addition, cardiac dimensions and hypertrophy increased (0.53 ± 0.02 / 0.53 ± 0.01, p < 0.05) due to increased relative cardiac mass compared to the SHAM group (0.40 ± 0.01). In the COA+vehicle and COA+FAS groups a significant decrease of 35% in cardiac ACE2 expression was found compared to the control group. Conclusions: Systolic dysfunction due to aortic coarctation is associated with increased Rhokinase activity and a significant decrease in ACE2 expression. Rho-kinase inhibition did not improve cardiac remodeling, systolic dysfunction, nor did it change cardiac ACE2 levels.


Subject(s)
Animals , Mice , Angiotensin-Converting Enzyme 2 , Heart Failure/enzymology , Aortic Coarctation , Blotting, Western , Hypertrophy, Left Ventricular , Ventricular Dysfunction, Left , Disease Models, Animal , Mice, Inbred C57BL
5.
J Am Heart Assoc ; 11(11): e024854, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35656980

ABSTRACT

Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate-limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte-specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α-MHC (myosin heavy chain)-Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno-associated virus serotype 9 system. The results showed that cardiomyocyte-specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction-induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)-MAPK (mitogen-activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload-induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.


Subject(s)
Heart Failure , Neuropeptides , Pyruvate Kinase , rac1 GTP-Binding Protein , Animals , Cardiomegaly/enzymology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Heart Failure/enzymology , Heart Failure/pathology , Heart Failure/prevention & control , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Neuropeptides/metabolism , Pyruvate Kinase/metabolism , rac1 GTP-Binding Protein/metabolism
6.
J Biol Chem ; 298(3): 101716, 2022 03.
Article in English | MEDLINE | ID: mdl-35151687

ABSTRACT

The CHKB gene encodes choline kinase ß, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb-/- mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/- mice. Unlike wildtype mice, 60% of the Chkb+/- and all Chkb-/- mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/- and Chkb-/- hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb-/- hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/- and Chkb-/- mice.


Subject(s)
Arrhythmias, Cardiac , Choline Kinase , Heart Failure , Animals , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/genetics , Atrial Natriuretic Factor/genetics , Choline Kinase/deficiency , Choline Kinase/genetics , Choline Kinase/metabolism , Disease Models, Animal , Heart Failure/enzymology , Heart Failure/genetics , Humans , Mice , Phosphatidylcholines/metabolism
7.
Sci Rep ; 12(1): 8, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996942

ABSTRACT

Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.


Subject(s)
Heart Failure/enzymology , Heart Failure/prevention & control , Heart/growth & development , Ubiquitin-Protein Ligases/metabolism , Animals , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Knockout , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , beta Catenin/genetics , beta Catenin/metabolism
8.
Biochem Pharmacol ; 195: 114866, 2022 01.
Article in English | MEDLINE | ID: mdl-34863976

ABSTRACT

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Subject(s)
Epoxide Hydrolases/metabolism , Epoxy Compounds/metabolism , Fatty Acids/metabolism , Heart Diseases/metabolism , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/metabolism , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Epoxy Compounds/chemistry , Heart Diseases/drug therapy , Heart Diseases/enzymology , Heart Failure/drug therapy , Heart Failure/enzymology , Heart Failure/metabolism , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/enzymology , Myocardial Infarction/metabolism , Solubility , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/metabolism
9.
Cardiovasc Res ; 118(1): 169-183, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33560342

ABSTRACT

AIMS: Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS: Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS: Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.


Subject(s)
Chemotaxis, Leukocyte , G-Protein-Coupled Receptor Kinase 5/metabolism , Heart Failure/enzymology , Leukocytes/metabolism , Myocardial Infarction/enzymology , Myocytes, Cardiac/enzymology , Ventricular Function, Left , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , G-Protein-Coupled Receptor Kinase 5/genetics , Heart Failure/immunology , Heart Failure/pathology , Heart Failure/physiopathology , Inflammation Mediators/metabolism , Leukocytes/immunology , Mice, Knockout , Myocardial Contraction , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Signal Transduction , Stroke Volume , Transcriptome , Ventricular Pressure
10.
Pak J Pharm Sci ; 34(5(Special)): 2059-2064, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34862874

ABSTRACT

To investigate the impacts of Yangxin decoction on the expressions of matrix metalloproteinase 9 (MMP-9), calcineurin (CaN), T cell activated nuclear factor 3 (NFAT3) and zinc finger transcription factor 4 (GATA4) in myocardial tissue of rats with chronic heart failure (CHF). 50 healthy SD rats were randomly divided into the normal control group (n = 10) and the operation group (n = 40). After successful modeling, the rats were randomly divided into 4 groups. And they were treated with Yangxin decoctions of low concentration (1.5 g/kg), medium concentration (2.5 g/kg), high concentration (3.5 g/kg) and distilled water (for 4 weeks). The LVSP, SAP, DAP and LVEDP in Yangxin decoction treatment groups were significantly superior to the model group. The LVEF, LVIDd and LVIDs in Yangxin decoction treatment groups were significantly superior to the model group. The activity of CaN in each group treated with Yangxin decoction was significantly lower than that in the model group. The expression levels of MMP-9, NFAT3, GATA4 protein in each group treated with Yangxin decoction were significantly lower than that in the model group.. Yangxin decoction can significantly improve the cardiac function, reduce CaN activity, decrease the expression levels of MMP-9, NFAT3 and GATA4, inhibit CaN/NFAT3 signaling pathway, increase myocardial remodeling and protect myocardial tissue in rats with CHF.


Subject(s)
Calcineurin/metabolism , Drugs, Chinese Herbal/pharmacology , GATA4 Transcription Factor/metabolism , Heart Failure/drug therapy , Matrix Metalloproteinase 9/metabolism , Myocardium/enzymology , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Ventricular Function, Left/drug effects , Animals , Chronic Disease , Disease Models, Animal , Female , Heart Failure/enzymology , Heart Failure/physiopathology , Male , Rats, Sprague-Dawley , Recovery of Function , Stroke Volume/drug effects , Ventricular Pressure/drug effects , Ventricular Remodeling/drug effects
12.
Cells ; 10(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34831146

ABSTRACT

Significant expression of neprilysin (NEP) is found on neutrophils, which present the transmembrane integer form of the enzyme. This study aimed to investigate the relationship of neutrophil transmembrane neprilysin (mNEP) with disease severity, adverse remodeling, and outcome in HFrEF. In total, 228 HFrEF, 30 HFpEF patients, and 43 controls were enrolled. Neutrophil mNEP was measured by flow-cytometry. NEP activity in plasma and blood cells was determined for a subset of HFrEF patients using mass-spectrometry. Heart failure (HF) was characterized by reduced neutrophil mNEP compared to controls (p < 0.01). NEP activity on peripheral blood cells was almost 4-fold higher compared to plasma NEP activity (p = 0.031) and correlated with neutrophil mNEP (p = 0.006). Lower neutrophil mNEP was associated with increasing disease severity and markers of adverse remodeling. Higher neutrophil mNEP was associated with reduced risk for mortality, total cardiovascular hospitalizations, and the composite endpoint of both (p < 0.01 for all). This is the first report describing a significant role of neutrophil mNEP in HFrEF. The biological relevance of neutrophil mNEP and exact effects of angiotensin-converting-enzyme inhibitors (ARNi) at the neutrophil site have to be determined. However, the results may suggest early initiation of ARNi already in less severe HF disease, where effects of NEP inhibition may be more pronounced.


Subject(s)
Heart Failure/enzymology , Neprilysin/metabolism , Neutrophils/enzymology , Aged , Cell Membrane/enzymology , Cohort Studies , Female , Heart Failure/blood , Heart Failure/pathology , Heart Failure/physiopathology , Hospitalization , Humans , Male , Middle Aged , Models, Biological , Neprilysin/blood , Risk Factors , Stroke Volume , Time Factors , Ventricular Remodeling
13.
Bioengineered ; 12(2): 10246-10253, 2021 12.
Article in English | MEDLINE | ID: mdl-34839778

ABSTRACT

We aimed to explore the effects of emodin on the energy metabolism of myocardial cells in rats with post-myocardial infarction (MI) heart failure (HF) and the extracellular signal-regulated kinase (ERK) pathway. The model of MI was established by ligation of the left anterior descending branch. After 4 weeks, the rats with left ventricular ejection fraction (LVEF) of ≤45% were used aspost-MI HF model animals and randomly divided into model, low-dose, middle-dose, high-dose and control groups (n=10). Low-, middle- and high-dose groups were gavaged with 20 mg/kg, 40 mg/kg and 60 mg/kg emodin daily, respectively. After administration for 14 d, the changes in LVEF, left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD) and interventricular septum thickness (IVS) were analyzed. The apoptosis rate of myocardial cells was detected by TUNEL staining. The levels of serum cardiac troponin I (cTnI) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) were determined using ELISA, and the expressions of mitochondrial respiratory chain complex I protein and phosphorylated-ERK (p-ERK) in myocardial tissues were determined by Western blotting.  Compared with model group, LVEDD, LVESD, apoptosis rate of myocardial cells, levels of serum cTnI and PGC-1, and expressions of complex I and p-ERK in myocardial tissues significantly decreased, while LVEF and IVS increased in low-dose, middle-dose, high-dose and control groups (P<0.05). The changes in the above indices were significantly dependent on the dose of emodin (P<0.05).Emodin can significantly relieve post-MI HF, reduce the apoptosis rate of myocardial tissues, and ameliorate the cardiac function of rats.


Subject(s)
Cardiotonic Agents/therapeutic use , Emodin/therapeutic use , Heart Failure/drug therapy , Heart Failure/etiology , MAP Kinase Signaling System , Myocardial Infarction/complications , Animals , Apoptosis/drug effects , Cardiotonic Agents/pharmacology , Emodin/pharmacology , Heart Failure/enzymology , Heart Failure/physiopathology , Heart Function Tests , MAP Kinase Signaling System/drug effects , Male , Myocardium/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/blood , Phosphorylation/drug effects , Rats, Sprague-Dawley , Troponin I/blood
14.
Am J Physiol Heart Circ Physiol ; 321(5): H976-H984, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34559578

ABSTRACT

Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.


Subject(s)
Heart Failure/enzymology , Heart Ventricles/enzymology , Hypertrophy, Left Ventricular/enzymology , Ubiquitin-Protein Ligases/deficiency , Ventricular Dysfunction, Left/enzymology , Ventricular Function, Left , Ventricular Remodeling , Animals , Aorta/physiopathology , Aorta/surgery , Diastole , Disease Models, Animal , Disease Progression , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibrillar Collagens/genetics , Fibrillar Collagens/metabolism , Gene Deletion , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Time Factors , Ubiquitin-Protein Ligases/genetics , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
15.
Am J Physiol Heart Circ Physiol ; 321(4): H650-H662, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34448639

ABSTRACT

The role of the Na+/K+-ATPase (NKA) in heart failure associated with myocardial infarction (MI) is poorly understood. The elucidation of its precise function is hampered by the existence of two catalytic NKA isoforms (NKA-α1 and NKA-α2). Our aim was to analyze the effects of an increased NKA-α2 expression on functional deterioration and remodeling during long-term MI treatment in mice and its impact on Ca2+ handling and inotropy of the failing heart. Wild-type (WT) and NKA-α2 transgenic (TG) mice (TG-α2) with a cardiac-specific overexpression of NKA-α2 were subjected to MI injury for 8 wk. As examined by echocardiography, gravimetry, and histology, TG-α2 mice were protected from functional deterioration and adverse cardiac remodeling. Contractility and Ca2+ transients (Fura 2-AM) in cardiomyocytes from MI-treated TG-α2 animals showed reduced Ca2+ amplitudes during pacing or after caffeine application. Ca2+ efflux in cardiomyocytes from TG-α2 mice was accelerated and diastolic Ca2+ levels were decreased. Based on these alterations, sarcomeres exhibited an enhanced sensitization and thus increased contractility. After the acute stimulation with the ß-adrenergic agonist isoproterenol (ISO), cardiomyocytes from MI-treated TG-α2 mice responded with increased sarcomere shortenings and Ca2+ peak amplitudes. This positive inotropic response was absent in cardiomyocytes from WT-MI animals. Cardiomyocytes with NKA-α2 as predominant isoform minimize Ca2+ cycling but respond to ß-adrenergic stimulation more efficiently during chronic cardiac stress. These mechanisms might improve the ß-adrenergic reserve and contribute to functional preservation in heart failure.NEW & NOTEWORTHY Reduced systolic and diastolic calcium levels in cardiomyocytes from NKA-α2 transgenic mice minimize the desensitization of the ß-adrenergic signaling system. These effects result in an improved ß-adrenergic reserve and prevent functional deterioration and cardiac remodeling.


Subject(s)
Calcium Signaling , Calcium/metabolism , Heart Failure/enzymology , Myocardial Contraction , Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Receptors, Adrenergic, beta/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Ventricular Remodeling , Adrenergic beta-Agonists/pharmacology , Animals , Calcium Signaling/drug effects , Disease Models, Animal , Female , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Male , Mice, Transgenic , Myocardial Contraction/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Receptors, Adrenergic, beta/drug effects , Sodium-Potassium-Exchanging ATPase/genetics , Ventricular Remodeling/drug effects
16.
J Mol Cell Cardiol ; 158: 89-100, 2021 09.
Article in English | MEDLINE | ID: mdl-34081951

ABSTRACT

Heart failure is a worldwide health condition that currently has limited noninvasive treatments. Heart disease includes both structural and molecular remodeling of the heart which is driven by alterations in gene expression in the cardiomyocyte. Therefore, understanding the regulatory mechanisms which instigate these changes in gene expression and constitute the foundation for pathological remodeling may be beneficial for developing new treatments for heart disease. These gene expression changes are largely preceded by epigenetic alterations to chromatin, including the post-translational modification of histones such as methylation, which alters chromatin to be more or less accessible for transcription factors or regulatory proteins to bind and modify gene expression. Methylation was once thought to be a permanent mark placed on histone or non-histone targets by methyltransferases, but is now understood to be a reversible process after the discovery of the first demethylase, KDM1A/LSD1. Since this time, it has been shown that demethylases play key roles in embryonic development, in maintaining cellular homeostasis and disease progression. However, the role of demethylases in the fetal and adult heart remains largely unknown. In this review, we have compiled data on the 33 mammalian demethylases that have been identified to date and evaluate their expression in the embryonic and adult heart as well as changes in expression in the failing myocardium using publicly available RNA-sequencing and proteomic datasets. Our analysis detected expression of 14 demethylases in the normal fetal heart, and 5 demethylases in the normal adult heart. Moreover, 8 demethylases displayed differential expression in the diseased human heart compared to healthy hearts. We then examined the literature regarding these demethylases and provide phenotypic information of 13 demethylases that have been functionally interrogated in some way in the heart. Lastly, we describe the 6 arginine and lysine residues on histones which have been shown to be methylated but have no corresponding demethylase identified which removes these methyl marks. Overall, this review highlights our current knowledge on the role of demethylases, their importance in cardiac development and pathophysiology and provides evidence for the use of pharmacological inhibitors to combat disease.


Subject(s)
Heart Failure/enzymology , Heart/growth & development , Jumonji Domain-Containing Histone Demethylases/metabolism , Myocardium/enzymology , Adult , Animals , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic , Heart Failure/drug therapy , Heart Failure/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Lysine/metabolism , Methylation , Protein Processing, Post-Translational
17.
Sci Rep ; 11(1): 11957, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099767

ABSTRACT

Frailty is a common comorbidity associated with adverse events in patients with heart failure, and early recognition is key to improving its management. We hypothesized that the AST to ALT ratio (AAR) could be a marker of frailty in patients with heart failure. Data from the FRAGILE-HF study were analyzed. A total of 1327 patients aged ≥ 65 years hospitalized with heart failure were categorized into three groups based on their AAR at discharge: low AAR (AAR < 1.16, n = 434); middle AAR (1.16 ≤ AAR < 1.70, n = 487); high AAR (AAR ≥ 1.70, n = 406). The primary endpoint was one-year mortality. The association between AAR and physical function was also assessed. High AAR was associated with lower short physical performance battery and shorter 6-min walk distance, and these associations were independent of age and sex. Logistic regression analysis revealed that high AAR was an independent marker of physical frailty after adjustment for age, sex and body mass index. During follow-up, all-cause death occurred in 161 patients. After adjusting for confounding factors, high AAR was associated with all-cause death (low AAR vs. high AAR, hazard ratio: 1.57, 95% confidence interval, 1.02-2.42; P = 0.040). In conclusion, AAR is a marker of frailty and prognostic for all-cause mortality in older patients with heart failure.


Subject(s)
Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Biomarkers/metabolism , Frailty/complications , Heart Failure/enzymology , Aged , Aged, 80 and over , Cause of Death , Cohort Studies , Female , Heart Failure/complications , Heart Failure/mortality , Hospitalization/statistics & numerical data , Humans , Kaplan-Meier Estimate , Logistic Models , Male , Prognosis , Proportional Hazards Models , Risk Factors
18.
Cells ; 10(2)2021 02 21.
Article in English | MEDLINE | ID: mdl-33669936

ABSTRACT

Heart failure (HF) represents the end-stage condition of several structural and functional cardiovascular diseases, characterized by reduced myocardial pump function and increased pressure load. The dysregulation of neurohormonal systems, especially the hyperactivity of the cardiac adrenergic nervous system (ANS), constitutes a hallmark of HF and exerts a pivotal role in its progression. Indeed, it negatively affects patients' prognosis, being associated with high morbidity and mortality rates, with a tremendous burden on global healthcare systems. To date, all the techniques proposed to assess the cardiac sympathetic nervous system are burdened by intrinsic limits that hinder their implementation in clinical practice. Several biomarkers related to ANS activity, which may potentially support the clinical management of such a complex syndrome, are slow to be implemented in the routine practice for several limitations due to their assessment and clinical impact. Lymphocyte G-protein-coupled Receptor Kinase 2 (GRK2) levels reflect myocardial ß-adrenergic receptor function in HF and have been shown to add independent prognostic information related to ANS overdrive. In the present manuscript, we provide an overview of the techniques currently available to evaluate cardiac ANS in HF and future perspectives in this field of relevant scientific and clinical interest.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Heart Failure/enzymology , Sympathetic Nervous System/enzymology , Animals , Biomarkers/metabolism , Heart Failure/physiopathology , Humans , Lymphocytes/enzymology , Models, Biological
19.
Commun Biol ; 4(1): 188, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580152

ABSTRACT

Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.


Subject(s)
Heart Failure/enzymology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Islet Amyloid Polypeptide/metabolism , Myocardium/enzymology , Phosphofructokinase-2/metabolism , Animals , Apoptosis , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Female , Heart Failure/pathology , Heart Failure/physiopathology , Macaca fascicularis , Male , Mitochondria, Heart/enzymology , Mitochondria, Heart/pathology , Myocardium/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Stroke Volume , Ventricular Function, Left , Ventricular Pressure
20.
Basic Res Cardiol ; 116(1): 11, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33590335

ABSTRACT

Nuclear histone deacetylase 4 (HDAC4) represses MEF2-mediated transcription, implicated in the development of heart failure. CaMKII-dependent phosphorylation drives nucleus-to-cytoplasm HDAC4 shuttling, but protein kinase A (PKA) is also linked to HDAC4 translocation. However, the interplay of CaMKII and PKA in regulating adult cardiomyocyte HDAC4 translocation is unclear. Here we sought to determine the interplay of PKA- and CaMKII-dependent HDAC4 phosphorylation and translocation in adult mouse, rabbit and human ventricular myocytes. Confocal imaging and protein analyses revealed that inhibition of CaMKII-but not PKA, PKC or PKD-raised nucleo-to-cytoplasmic HDAC4 fluorescence ratio (FNuc/FCyto) by ~ 50%, indicating baseline CaMKII activity that limits HDAC4 nuclear localization. Further CaMKII activation (via increased extracellular [Ca2+], high pacing frequencies, angiotensin II or overexpression of CaM or CaMKIIδC) led to significant HDAC4 nuclear export. In contrast, PKA activation by isoproterenol or forskolin drove HDAC4 into the nucleus (raising FNuc/FCyto by > 60%). These PKA-mediated effects were abolished in cells pretreated with PKA inhibitors and in cells expressing mutant HDAC4 in S265/266A mutant. In physiological conditions where both kinases are active, PKA-dependent nuclear accumulation of HDAC4 was predominant in the very early response, while CaMKII-dependent HDAC4 export prevailed upon prolonged stimuli. This orchestrated co-regulation was shifted in failing cardiomyocytes, where CaMKII-dependent effects predominated over PKA-dependent response. Importantly, human cardiomyocytes showed similar CaMKII- and PKA-dependent HDAC4 shifts. Collectively, CaMKII limits nuclear localization of HDAC4, while PKA favors HDAC4 nuclear retention and S265/266 is essential for PKA-mediated regulation. These pathways thus compete in HDAC4 nuclear localization and transcriptional regulation in cardiac signaling.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/enzymology , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Failure/enzymology , Histone Deacetylases/metabolism , Myocytes, Cardiac/enzymology , Active Transport, Cell Nucleus , Adrenergic beta-Agonists/pharmacology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Disease Models, Animal , Female , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Histone Deacetylases/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Rabbits , Repressor Proteins , Signal Transduction , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL