Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.018
1.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Article En | MEDLINE | ID: mdl-38695592

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Apoptosis , Cell Proliferation , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Hematopoietic Stem Cells/radiation effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/metabolism , Apoptosis/radiation effects , Hematopoiesis/radiation effects , Cell Proliferation/radiation effects , Cell Line, Tumor , Ultraviolet Rays/adverse effects , Mice , Mice, Inbred C57BL , Time Factors , Ultraviolet Therapy
2.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714156

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Pluripotent Stem Cells , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Mice , Cell Lineage , Endothelial Cells/cytology , Endothelial Cells/metabolism
3.
Genes (Basel) ; 15(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38790192

TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.


Hematopoiesis , Humans , Animals , Hematopoiesis/genetics , Nuclear Receptor Subfamily 2, Group C, Member 2/metabolism , Nuclear Receptor Subfamily 2, Group C, Member 2/genetics , Erythropoiesis/genetics , Gene Expression Regulation, Developmental
4.
Gut Microbes ; 16(1): 2350784, 2024.
Article En | MEDLINE | ID: mdl-38727219

The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.


Gastrointestinal Microbiome , Hematopoiesis , Hematopoietic Stem Cells , Hematopoiesis/physiology , Gastrointestinal Microbiome/physiology , Humans , Hematopoietic Stem Cells/microbiology , Animals , Signal Transduction , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Gastrointestinal Tract/microbiology , Bone Marrow/microbiology , Bone Marrow/physiology
5.
Nature ; 629(8014): 1149-1157, 2024 May.
Article En | MEDLINE | ID: mdl-38720070

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
6.
Curr Opin Hematol ; 31(4): 163-167, 2024 07 01.
Article En | MEDLINE | ID: mdl-38723188

PURPOSE OF REVIEW: The repair of bone after injury requires the participation of many different immune cell populations, which are derived from the hematopoietic lineage. The field of osteoimmunology, or the study of the interactions between bone and the immune system, is a growing field with emerging impact on both the basic science and clinical aspects of fracture healing. RECENT FINDINGS: Despite previous focus on the innate immune system in fracture healing, recent studies have revealed an important role for the adaptive immune system in bone repair. The composition of adaptive and innate immune cell populations present at the fracture site is significantly altered during aging and diet-induced obesity, which may contribute to delayed healing. Recent data also suggest a complicated relationship between fracture repair and systemic inflammation, raising the possibility that immune populations from distant sites such as the gut can impact the bone repair process. SUMMARY: These findings have important implications for the treatment of fracture patients with antibiotics or anti-inflammatory drugs. Furthermore, the effects of systemic inflammation on fracture repair in the contexts of aging or obesity should be carefully interpreted, as they may not be uniformly detrimental.


Fracture Healing , Hematopoiesis , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Bone and Bones/metabolism , Bone and Bones/pathology , Fractures, Bone/therapy , Fractures, Bone/metabolism , Fractures, Bone/pathology , Obesity/metabolism , Obesity/pathology
7.
Nat Commun ; 15(1): 4325, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773071

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


DNA-Binding Proteins , Dioxygenases , Epigenesis, Genetic , Hematopoietic Stem Cells , Mutation , Proto-Oncogene Proteins , Dioxygenases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Humans , Hematopoiesis/genetics , Mice , Cell Differentiation/genetics
8.
Commun Biol ; 7(1): 615, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777862

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
9.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38704134

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Endothelial Progenitor Cells , Hematopoiesis , PPAR delta , Reactive Oxygen Species , Humans , PPAR delta/metabolism , PPAR delta/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Reactive Oxygen Species/metabolism , Animals , Hematopoiesis/drug effects , Male , Female , Fluorouracil/pharmacology , Middle Aged , Mice , Thiazoles/pharmacology , NADPH Oxidases/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/drug therapy
10.
Sci Total Environ ; 937: 173482, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38795982

Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.


Europium , Hematopoiesis , Lysosomes , Metal Nanoparticles , Oxides , Animals , Europium/toxicity , Mice , Lysosomes/drug effects , Lysosomes/metabolism , Oxides/toxicity , Hematopoiesis/drug effects , Metal Nanoparticles/toxicity , Spleen/drug effects , Nanoparticles/toxicity
11.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Article En | MEDLINE | ID: mdl-38816617

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Megakaryocytes , Blood Platelets/immunology , Blood Platelets/metabolism , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/immunology , Megakaryocytes/cytology , Cell Lineage , Mice, Inbred C57BL , Hematopoiesis , Thrombopoiesis , Mice, Knockout , Humans , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology
12.
Cell ; 187(11): 2817-2837.e31, 2024 May 23.
Article En | MEDLINE | ID: mdl-38701783

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
13.
Cell Rep Med ; 5(5): 101558, 2024 May 21.
Article En | MEDLINE | ID: mdl-38733986

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.


Clonal Hematopoiesis , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Mutation , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Clonal Hematopoiesis/genetics , Mice , Mutation/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mice, Inbred C57BL , Haploinsufficiency/genetics , Disease Models, Animal , Hematopoiesis/genetics
14.
Adv Immunol ; 161: 85-108, 2024.
Article En | MEDLINE | ID: mdl-38763703

Hematopoiesis, a process which generates blood and immune cells, changes significantly during mammalian development. Definitive hematopoiesis is marked by the emergence of long-term hematopoietic stem cells (HSCs). Here, we will focus on the post-transcriptional differences between fetal liver (FL) and adult bone marrow (ABM) HSCs. It remains unclear how or why exactly FL HSCs transition to ABM HSCs, but we aim to leverage their differences to revive an old idea: in utero HSC transplantation. Unexpectedly, the expression of certain RNA-binding proteins (RBPs) play an important role in HSC specification, and can be employed to convert or reprogram adult HSCs back to a fetal-like state. Among other features, FL HSCs have a broad differentiation capacity that includes the ability to regenerate both conventional B and T cells, as well as innate-like or unconventional lymphocytes such as B-1a and marginal zone B (MzB) cells. This chapter will focus on RNA binding proteins, namely LIN28B and IGF2BP3, that are expressed during fetal life and how they promote B-1a cell development. Furthermore, this chapter considers a potential clinical application of synthetic co-expression of LIN28B and IGF2BP3 in HSCs.


B-Lymphocytes , Hematopoietic Stem Cells , RNA-Binding Proteins , Humans , Animals , RNA-Binding Proteins/metabolism , Hematopoietic Stem Cells/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation , Hematopoiesis , RNA Processing, Post-Transcriptional , Lymphopoiesis/genetics , Hematopoietic Stem Cell Transplantation
15.
Adv Immunol ; 161: 109-126, 2024.
Article En | MEDLINE | ID: mdl-38763699

Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.


Adaptive Immunity , G-Quadruplexes , Hematopoiesis , Humans , Hematopoiesis/genetics , Animals , DNA/immunology , Nucleic Acid Conformation
16.
Exp Hematol ; 134: 104215, 2024 Jun.
Article En | MEDLINE | ID: mdl-38580008

Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.


Hematopoietic Stem Cells , Inflammation , Humans , Inflammation/pathology , Inflammation/immunology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/cytology , Animals , Immunity, Innate , Epigenesis, Genetic , Cell Differentiation , Hematopoiesis
17.
Elife ; 122024 Apr 23.
Article En | MEDLINE | ID: mdl-38652107

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Cell Differentiation , Gene Regulatory Networks , Cell Differentiation/genetics , Animals , Hematopoiesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryonic Development/genetics , Cell Transdifferentiation/genetics , Humans
18.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38602917

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Hematopoiesis , Signal Transduction , Cell Communication , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
19.
Elife ; 122024 Apr 04.
Article En | MEDLINE | ID: mdl-38573813

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Glycolysis , Phosphofructokinase-2 , Animals , Mice , Adenosine Triphosphate/metabolism , Anaerobiosis , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphoric Monoester Hydrolases/metabolism
20.
PLoS One ; 19(4): e0300623, 2024.
Article En | MEDLINE | ID: mdl-38564577

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Bone Marrow Transplantation , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice, Knockout
...