Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.890
Filter
1.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930897

ABSTRACT

This study investigated the mechanism by which fucoxanthin acts as a novel ferroptosis inducer to inhibit tongue cancer. The MTT assay was used to detect the inhibitory effects of fucoxanthin on SCC-25 human tongue squamous carcinoma cells. The levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and total iron were measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to assess glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (Nrf2), Keap1, solute carrier family 7 member 11 (SLC7A11), transferrin receptor protein 1 (TFR1), p53, and heme oxygenase 1 (HO-1) expression. Molecular docking was performed to validate interactions. Compared with the control group, the activity of fucoxanthin-treated SCC-25 cells significantly decreased in a dose- and time-dependent manner. The levels of MMP, GSH, and SOD significantly decreased in fucoxanthin-treated SCC-25 cells; the levels of ROS, MDA, and total iron significantly increased. mRNA and protein expression levels of Keap1, GPX4, Nrf2, and HO-1 in fucoxanthin-treated cells were significantly decreased, whereas levels of TFR1 and p53 were significantly increased, in a concentration-dependent manner. Molecular docking analysis revealed that binding free energies of fucoxanthin with p53, SLC7A11, GPX4, Nrf2, Keap1, HO-1, and TFR1 were below -5 kcal/mol, primarily based on active site hydrogen bonding. Our findings suggest that fucoxanthin can induce ferroptosis in SCC-25 cells, highlighting its potential as a treatment for tongue cancer.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Molecular Docking Simulation , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Xanthophylls , Humans , NF-E2-Related Factor 2/metabolism , Ferroptosis/drug effects , Xanthophylls/pharmacology , Xanthophylls/chemistry , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line, Tumor , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tongue Neoplasms/drug therapy , Tongue Neoplasms/metabolism , Tongue Neoplasms/pathology , Receptors, Transferrin/metabolism , Membrane Potential, Mitochondrial/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Superoxide Dismutase/metabolism , Down-Regulation/drug effects , Antigens, CD
2.
Exp Cell Res ; 440(1): 114127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38857839

ABSTRACT

CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.


Subject(s)
Apoptosis , Heme Oxygenase-1 , Ischemic Stroke , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Neurons/metabolism , Neurons/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Rats , Male , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , Signal Transduction , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Heme Oxygenase (Decyclizing)
3.
Drug Des Devel Ther ; 18: 2287-2297, 2024.
Article in English | MEDLINE | ID: mdl-38915869

ABSTRACT

Objective: Catalpol, as a natural medicine small-molecule drug, has been proven to have anti-inflammatory and antioxidant pharmacological effects. Methods: The effect of catalpol on oxidative damage of mouse epidermal fibroblast L929 model and its mechanism were investigated by using hydrogen peroxide model, CCK8 method, flow cytometry, and Western blot. Results: The effect of catalpol on Nrf2/HO-1 signaling pathway was further studied to improve oxidative stress in cell models. The results showed that catalpol had no cytotoxicity to L929 cells, and inhibited the apoptosis of L929 cells after oxidative damage in a concentration-dependent manner, thus playing a role in cell protection. The oxidative damage of cells was inhibited by up-regulating the expression of the signature protein of Nrf2/HO-1 signaling pathway and inhibiting the interstitial formation of cells. Conclusion: This study is a preliminary study on the protective function of catalpol against oxidation and apoptosis in dermal fibroblasts, which can provide a theoretical basis and drug guidance for promoting skin wound healing in the later stage.


Subject(s)
Fibroblasts , Heme Oxygenase-1 , Iridoid Glucosides , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Iridoid Glucosides/pharmacology , NF-E2-Related Factor 2/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Oxidative Stress/drug effects , Animals , Mice , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Dose-Response Relationship, Drug , Apoptosis/drug effects , Cells, Cultured , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Antioxidants/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Structure-Activity Relationship , Cell Line , Membrane Proteins
4.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867250

ABSTRACT

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Membrane Proteins
5.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
6.
Int Immunopharmacol ; 136: 112380, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850790

ABSTRACT

BACKGROUND AND AIMS: Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS: Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS: Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS: Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.


Subject(s)
Apoptosis , Colitis , Crohn Disease , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Humans , Male , Colon/pathology , Colon/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-10/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Membrane Proteins
7.
Cell Death Dis ; 15(6): 406, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858351

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent myocardial microvascular complication of the myocardium with a complex pathogenesis. Investigating the pathogenesis of DCM can significantly contribute to enhancing its prevention and treatment strategies. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Functionally, inhibition of Kat2a effectively ameliorated high glucose-induced cardiomyocyte injury both in vitro and in vivo by suppressing ferroptosis. Mechanistically, Demethylase alkB homolog 5 (Alkbh5) was found to reduce m6A methylation levels on Kat2a mRNA, leading to its upregulation. YTH domain family 2 (Ythdf2) played a crucial role as an m6A reader protein mediating the degradation of Kat2a mRNA. Furthermore, Kat2a promoted ferroptosis by increasing Tfrc and Hmox1 expression via enhancing the enrichment of H3K27ac and H3K9ac on their promoter regions. In conclusion, our findings unveil a novel role for the Kat2a-ferroptosis axis in DCM pathogenesis, providing valuable insights for potential clinical interventions.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Heme Oxygenase-1 , Histone Acetyltransferases , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Animals , Ferroptosis/genetics , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Mice , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism
8.
Cell Mol Life Sci ; 81(1): 276, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909325

ABSTRACT

N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.


Subject(s)
Adenosine , Leukemia, Myeloid, Acute , Oxidative Stress , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Oxidative Stress/drug effects , Bortezomib/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
9.
Ecotoxicol Environ Saf ; 280: 116562, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850704

ABSTRACT

Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.


Subject(s)
Diquat , Ferroptosis , Heme Oxygenase-1 , Herbicides , Reactive Oxygen Species , Spermatogonia , Testis , Animals , Male , Ferroptosis/drug effects , Mice , Spermatogonia/drug effects , Spermatogonia/pathology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Testis/drug effects , Testis/pathology , Diquat/toxicity , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Spermatogenesis/drug effects , Membrane Proteins
11.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910496

ABSTRACT

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Subject(s)
Heme Oxygenase-1 , Osteoarthritis , Osteoclasts , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoclasts/metabolism , Humans , Animals , Oxidative Stress , Cell Differentiation , Osteogenesis , Male , Mice , Reactive Oxygen Species/metabolism
12.
PeerJ ; 12: e17488, 2024.
Article in English | MEDLINE | ID: mdl-38827303

ABSTRACT

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Subject(s)
Apoptosis , Catechin , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoblasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Catechin/analogs & derivatives , Catechin/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cadmium/toxicity , Cell Differentiation/drug effects , Cell Line , Membrane Proteins
13.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Disease Models, Animal , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Constipation/metabolism , Constipation/drug therapy , Sirtuin 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Rats , Hydrogen/pharmacology , Male , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Water/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Feces/chemistry
14.
Immun Inflamm Dis ; 12(6): e1169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860757

ABSTRACT

INTRODUCTION: We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS: An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1ß. Both models were then treated with PRP. RESULTS: In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS: The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.


Subject(s)
Apoptosis , Chondrocytes , NF-E2-Related Factor 2 , Osteoarthritis , Platelet-Rich Plasma , Signal Transduction , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Chondrocytes/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Quassins/pharmacology , Quassins/therapeutic use , Rats, Sprague-Dawley , Disease Models, Animal , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-1beta/metabolism , Inflammation/immunology , Cells, Cultured
15.
Pharmazie ; 79(6): 101-108, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38877681

ABSTRACT

In this study, we hypothesized that lixisenatide (LIX) and ticagrelor (TIC) could have a protective effect against type 2 diabetes mellitus (T2DM)-induced vascular damage. Furthermore, we explored the possible additional protective effect of co-administering LIX and TIC in the treatment regimen. Methods: 50 male rats were divided into five groups, each comprising 10 rats: C (control), D (T2DM rats), D + LIX (T2DM rats treated with LIX for 4 weeks), D + TIC (T2DM rats treated with TIC for 4 weeks), and D + LIX + TIC (T2DM rats treated with LIX + TIC for 4 weeks). Results: The D group showed an increase in body weight, blood glucose, hemostatic model assessment for insulin resistance (HOMA-IR), aorta reactive oxygen species (ROS), and nuclear factor kappa B (NF-κ B), along with a reduction in serum insulin, aorta superoxide dismutase (SOD), glutathione reduced (GSH), nuclear factor erythroid-2 (NrF2), hemeoxygenase-1 (HO-1), and endothelial nitric oxide synthase (eNOS). Deterioration in the aorta histopathological condition, coupled with a noticeable impairment in vascular reactivity compared to the C group, was observed. A single administration of LIX showed a reduction in body weight, blood glucose, HOMA-IR, aorta ROS, and NF-κ B, accompanied by an increase in serum insulin, aorta SOD, GSH, NrF2, HO-1, and eNOS. Amelioration in the aorta histopathological condition and improved vascular reactivity compared to the D group were reported. Similarly, a single administration of TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta SOD, GSH, NrF2, HO-1, and eNOS. A slight amelioration was detected in the aorta histopathological condition, with improved vascular reactivity compared to the D group. The combined administration of LIX and TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta GSH, SOD, HO-1, and eNOS. This was combined with evident amelioration in the aorta histopathological condition and noticeable improvement in vascular reactivity compared to the single treatment with either LIX or TIC group. Conclusion: The present study introduces clear evidence that the administration of LIX and TIC can improve metabolic and vascular complications of T2DM through modulating eNOS and NrF2 /HO-1 signaling. The combined administration of LIX and TIC produced more significant effects than a single treatment.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Peptides , Reactive Oxygen Species , Signal Transduction , Ticagrelor , Animals , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Signal Transduction/drug effects , Ticagrelor/pharmacology , Ticagrelor/administration & dosage , Peptides/pharmacology , Peptides/administration & dosage , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Reactive Oxygen Species/metabolism , Blood Glucose/drug effects , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , NF-kappa B/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Heme Oxygenase-1/metabolism , Insulin , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Drug Synergism , Glucagon-Like Peptide-2 Receptor
16.
Genes Genomics ; 46(7): 785-801, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38767825

ABSTRACT

BACKGROUND: Uveal melanoma (UVM) is the most common primary ocular malignancy, with a wide range of symptoms and outcomes. The programmed cell death (PCD) plays an important role in tumor development, diagnosis, and prognosis. There is still no research on the relationship between PCD-related genes and UVM. A novel PCD-associated prognostic model is urgently needed to improve treatment strategies. OBJECTIVE: We aim to screen PCD-related prognostic signature and investigate its proliferation ability and apoptosis in UVM cells. METHODS: The clinical information and RNA-seq data of the UVM patients were collected from the TCGA cohort. All the patients were classified using consensus clustering by the selected PCD-related genes. After univariate Cox regression and PPI network analysis, the prognostic PCD-related genes were then submitted to the LASSO regression analysis to build a prognostic model. The level of immune infiltration of 8-PCD signature in high- and low-risk patients was analyzed using xCell. The prediction on chemotherapy and immunotherapy response in UVM patients was assessed by GDSC and TIDE algorithm. CCK-8, western blot and Annexin V-FITC/PI staining were used to explore the roles of HMOX1 in UVM cells. RESULTS: A total of 8-PCD signature was constructed and the risk score of the PCD signature was negatively correlated with the overall survival, indicating strong predictive ability and independent prognostic value. The risk score was positively correlated with CD8 Tcm, CD8 Tem and Th2 cells. Immune cells in high-risk group had poorer overall survival. The drug sensitivity demonstrated that cisplatin might impact the progression of UVM and better immunotherapy responsiveness in the high-risk group. Finally, Overespression HMOX1 (OE-HMOX1) decreased the cell viability and induced apoptosis in UVM cells. Recuse experiment results showed that ferrostatin-1 (fer-1) protected MP65 cells from apoptosis and necrosis caused by OE-HMOX1. CONCLUSION: The PCD signature may have a significant role in the tumor microenvironment, clinicopathological characteristics, prognosis and drug sensitivity. More importantly, HMOX1 depletion greatly induced tumor cell growth and inhibited cell apoptosis and fer-1 protected UVM cells from apoptosis and necrosis induced by OE-HMOX1. This work provides a foundation for effective therapeutic strategy in tumour treatment.


Subject(s)
Apoptosis , Cell Proliferation , Heme Oxygenase-1 , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/immunology , Melanoma/genetics , Melanoma/pathology , Melanoma/immunology , Melanoma/drug therapy , Apoptosis/genetics , Prognosis , Cell Proliferation/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Middle Aged , Transcriptome , Biomarkers, Tumor/genetics
17.
Tissue Cell ; 88: 102420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795506

ABSTRACT

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Diabetes Mellitus, Experimental , Losartan , NF-E2-Related Factor 2 , Spinal Cord , Animals , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , NF-E2-Related Factor 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats , Male , Losartan/pharmacology , Heme Oxygenase-1/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/drug therapy , Signal Transduction/drug effects , Rats, Wistar , Apoptosis/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects
18.
Nanoscale ; 16(25): 12095-12106, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38819371

ABSTRACT

Triple-negative breast cancer (TNBC) is known for its strong invasiveness, high recurrence rates, and poor prognosis. Heme oxygenase-1 (HO-1) is closely related to tumor invasion, metastasis, recurrence and formation of tumor immunosuppression. The expression of HO-1 is high in TNBC and low in normal tissues. In this study, AgPPIX was synthesized as a heme oxygenase-1 (HO-1) inhibitor and a photosensitizer for TNBC therapy. PDA nanoparticles were synthesized and modified with anti-CD24 and p-toluenesulfonamide (PTSC) on their both sides to obtain PTSC@AgPPIX/PDA@anti-CD24 Janus nanoparticles (PAPC) for AgPPIX-targeted delivery. Anti-CD24 is targeted to CD24 on tumor cells and the PTSC moiety is targeted to endoplasmic reticulum (ER), where HO-1 is located. The results indicated that PAPC Janus nanoparticles exhibited higher cytotoxicity in 4T1 cells than that of the mono-modified nanoparticles. PAPC not only inhibited the expression of HO-1 and VEGF but also reduced TrxR activity significantly. Furthermore, PAPC not only promoted intracellular ROS production under laser irradiation for tumor photodynamic therapy (PDT) but also polarized TAMs from M2-type to M1 for tumor immunotherapy. In vivo experiments confirmed that PAPC could remodel the tumor immune microenvironment and almost completely inhibit the tumor growth in mouse models. Therefore, PAPC Janus nanoparticles are a promising nanoplatform with a dual-targeting capacity for TNBC immune/PDT synergistic therapy.


Subject(s)
Endoplasmic Reticulum , Immunotherapy , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Mice , Female , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Nanoparticles/chemistry , Endoplasmic Reticulum/metabolism , Humans , Heme Oxygenase-1/metabolism , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology
19.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785151

ABSTRACT

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Subject(s)
Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
20.
Environ Toxicol Pharmacol ; 108: 104468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759849

ABSTRACT

Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.


Subject(s)
Chlorpyrifos , Insecticides , Kelch-Like ECH-Associated Protein 1 , Macrophages , NF-E2-Related Factor 2 , Reactive Oxygen Species , Chlorpyrifos/toxicity , Animals , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Insecticides/toxicity , Cell Survival/drug effects , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Superoxide Dismutase/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...