Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 387
1.
Elife ; 132024 May 31.
Article En | MEDLINE | ID: mdl-38819423

Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.


Apoptosis , Chondrocytes , DNA Methylation , Hemophilia A , Proto-Oncogene Proteins c-akt , Signal Transduction , Tenascin , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Mice , Hemophilia A/metabolism , Hemophilia A/genetics , Hemophilia A/complications , Tenascin/metabolism , Tenascin/genetics , Extracellular Matrix/metabolism , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology
2.
Eur J Immunol ; 54(4): e2350506, 2024 Apr.
Article En | MEDLINE | ID: mdl-38429238

Tolerance to self-proteins involves multiple mechanisms, including conventional CD4+ T-cell (Tconv) deletion in the thymus and the recruitment of natural regulatory T cells (nTregs). The significant incidence of autoantibodies specific for the blood coagulation factor VIII (FVIII) in healthy donors illustrates that tolerance to self-proteins is not always complete. In contrast to FVIII-specific Tconvs, FVIII-specific nTregs have never been revealed and characterized. To determine the frequency of FVIII-specific Tregs in human peripheral blood, we assessed the specificity of in vitro expanded Tregs by the membrane expression of the CD137 activation marker. Amplified Tregs maintain high levels of FOXP3 expression and exhibit almost complete demethylation of the FOXP3 Treg-specific demethylated region. The cells retained FOXP3 expression after long-term culture in vitro, strongly suggesting that FVIII-specific Tregs are derived from the thymus. From eleven healthy donors, we estimated the frequencies of FVIII-specific Tregs at 0.17 cells per million, which is about 10-fold lower than the frequency of FVIII-specific CD4+ T cells we previously published. Our results shed light on the mechanisms of FVIII tolerance by a renewed approach that could be extended to other self- or non-self-antigens.


Factor VIII , Hemophilia A , Humans , Factor VIII/metabolism , T-Lymphocytes, Regulatory , Hemophilia A/metabolism , Autoantibodies , Forkhead Transcription Factors/metabolism
3.
J Thromb Haemost ; 21(12): 3329-3341, 2023 12.
Article En | MEDLINE | ID: mdl-37839613

Remarkably, it has been 40 years since the isolation of the 2 genes involved in hemophilia A (HA) and hemophilia B (HB), encoding clotting factor (F) VIII (FVIII) and FIX, respectively. Over the years, these advances led to the development of purified recombinant protein factors that are free of contaminating viruses from human pooled plasma for hemophilia treatments, reducing the morbidity and mortality previously associated with human plasma-derived clotting factors. These discoveries also paved the way for modified factors that have increased plasma half-lives. Importantly, more recent advances have led to the development and Food and Drug Administration approval of a hepatocyte-targeted, adeno-associated viral vector-mediated gene transfer approach for HA and HB. However, major concerns regarding the durability and safety of HA gene therapy remain to be resolved. Compared with FIX, FVIII is a much larger protein that is prone to misfolding and aggregation in the endoplasmic reticulum and is poorly secreted by the mammalian cells. Due to the constraint of the packaging capacity of adeno-associated viral vector, B-domain deleted FVIII rather than the full-length protein is used for HA gene therapy. Like full-length FVIII, B-domain deleted FVIII misfolds and is inefficiently secreted. Its expression in hepatocytes activates the cellular unfolded protein response, which is deleterious for hepatocyte function and survival and has the potential to drive hepatocellular carcinoma. This review is focused on our current understanding of factors limiting FVIII secretion and the potential pathophysiological consequences upon expression in hepatocytes.


Hemophilia A , Hemophilia B , Animals , Humans , Factor VIII/metabolism , Hemophilia A/genetics , Hemophilia A/therapy , Hemophilia A/metabolism , Blood Coagulation Factors/genetics , Genetic Therapy , Hemophilia B/therapy , Hemophilia B/drug therapy , Mammals/genetics , Mammals/metabolism
4.
Thromb Res ; 231: 8-16, 2023 11.
Article En | MEDLINE | ID: mdl-37741049

Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.


Hemophilia A , Joint Diseases , Humans , Mice , Animals , Factor VIII/genetics , Factor VIII/therapeutic use , Factor VIII/metabolism , TNF Receptor-Associated Factor 6/metabolism , Disease Models, Animal , Joint Diseases/genetics , Hemophilia A/complications , Hemophilia A/genetics , Hemophilia A/metabolism
5.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37445906

The most common clinical presentation of hemophilia A and hemophilia B is bleeding in large joints and striated muscles. It is unclear why bleeding has a predilection to affect joints and muscles. As muscles and joints are involved in intermittent movement, we explored whether this phenomenon could be associated with an impact on factor VIII and IX levels. Purified proteins and a mouse model were assessed using coagulation assays, Western blot analysis and immuno-staining. Movement caused an increase in thrombin activity and a decrease in factor VIII and factor IX activity. The decrease in factor VIII activity was more significant in the presence of thrombin and during movement. Under movement condition, sodium ions appeared to enhance the activity of thrombin that resulted in decreased factor VIII activity. Unlike factor VIII, the reduction in factor IX levels in the movement condition was thrombin-independent. High factor VIII levels were found to protect factor IX from degradation and vice versa. In mice that were in movement, factor VIII and IX levels decreased in the microcirculation of the muscle tissue compared with other tissues and to the muscle tissue at rest. Movement had no effect on von Willebrand factor levels. Movement induces reduction in factor VIII and IX levels. It enables an increase in the binding of sodium ions to thrombin leading to enhanced thrombin activity and augmented degradation of factor VIII. These data suggest a potential mechanism underlying the tendency of hemophilia patients to bleed in muscles and joints.


Hemophilia A , Hemostatics , Animals , Mice , Factor VIII/metabolism , Factor IX/metabolism , Thrombin , Hemophilia A/metabolism , Hemorrhage
6.
Biochem Biophys Res Commun ; 628: 49-56, 2022 11 05.
Article En | MEDLINE | ID: mdl-36081278

The coagulation factor 9 gene (FIX) point mutation contributes to most hemophilia B cases, providing ideal gene correction models. Here we identified the frequent mutation G20519A (R226Q) in FIX, which resulted in many severe and moderate hemophilia B patients. This study aimed to investigate the effect of HDR and base editing in correcting FIX mutant. We first constructed HEK293 and liver-derived cell lines Huh7 cells stabling carrying mutated FIX containing G20519A (HEK293-FIXmut and Huh7-FIXmut). Then, CRISPR/Cas9-based homology-directed repair (HDR) and base editing were used for the correction of this mutated point. We used Cas9 nickase (nCas9) mediated HDR and the advanced base editor ABE8e to correct G20519A and then measured the concentration and activity of FIX. Furthermore, we used the star-shaped poly(lysine) gene nanocarriers to deliver the ABE8e correction systems into HEK293-FIXmut and Huh7-FIXmut stem cells to correct mutated FIX. As a result, we found that gRNAs directed inefficient HDR in correcting G20519A. The ABE8e corrected the mutation efficiently in both HEK293-FIXmut and Huh7-FIXmut stem cells. In addition, the star-shaped poly(lysine) carriers delivered non-viral vectors into stem cells efficiently. The nanocarriers-delivered ABE8e system corrected mutated FIX in stem cells, and the stem cells secreted active FIX in high concentration. In conclusion, our study provides a potential alternative for correcting mutated FIX in hemophilia B patients.


Gene Editing , Hemophilia A , Hemophilia B , Aminohydrolases/genetics , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , CRISPR-Cas Systems/genetics , Deoxyribonuclease I/metabolism , Gene Editing/methods , HEK293 Cells , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia B/genetics , Hemophilia B/therapy , Humans , Mutation , Mutation, Missense , Polylysine/chemistry , Stem Cells/metabolism
7.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article En | MEDLINE | ID: mdl-35806285

In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.


Hemophilia A , Mesenchymal Stem Cells , Adult , Blood Coagulation Tests , Cell Differentiation , Cells, Cultured , Culture Media/metabolism , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/therapy , Humans , Mesenchymal Stem Cells/metabolism , Partial Thromboplastin Time
8.
Blood Adv ; 6(19): 5556-5569, 2022 10 11.
Article En | MEDLINE | ID: mdl-35849710

We previously showed that intraosseous (IO) delivery of factor VIII (FVIII, gene F8) lentiviral vector (LV) driven by the megakaryocyte-specific promoter Gp1bα (G-F8-LV) partially corrected the bleeding phenotype in hemophilia A (HemA) mice for up to 5 months. In this study, we further characterized and confirmed the successful transduction of self-regenerating hematopoietic stem and progenitor cells (HSPCs) in treated mice. In addition, secondary transplant of HSPCs isolated from G-F8-LV-treated mice corrected the bleeding phenotype of the recipient HemA mice, indicating the potential of long-term transgene expression following IO-LV therapy. To facilitate the translation of this technology to human applications, we evaluated the safety and efficacy of this gene transfer therapy into human HSPCs. In vitro transduction of human HSPCs by the platelet-targeted G-F8-LV confirmed megakaryocyte-specific gene expression after preferential differentiation of HSPCs to megakaryocyte lineages. Lentiviral integration analysis detected a polyclonal integration pattern in G-F8-LV-transduced human cells, profiling the clinical safety of hemophilia treatment. Most importantly, IO delivery of G-F8-LV to humanized NBSGW mice produced persistent FVIII expression in human platelets after gene therapy, and the megakaryocytes differentiated from human CD34+ HSPCs isolated from LV-treated humanized mice showed up to 10.2% FVIII expression, indicating efficient transduction of self-regenerating human HSPCs. Collectively, these results indicate the long-term safety and efficacy of the IO-LV gene therapy strategy for HemA in a humanized model, adding further evidence to the feasibility of translating this method for clinical applications.


Hemophilia A , Hemostatics , Animals , Humans , Mice , Blood Platelets/metabolism , Factor VIII/metabolism , Genetic Therapy/methods , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/therapy
9.
Blood Adv ; 6(12): 3729-3734, 2022 06 28.
Article En | MEDLINE | ID: mdl-35427414

Hemophilia A is an inherited bleeding disorder caused by defective or deficient coagulation factor VIII (FVIII) activity. Until recently, the only treatment for prevention of bleeding involved IV administration of FVIII. Gene therapy with adeno-associated vectors (AAVs) has shown some efficacy in patients with hemophilia A. However, limitations persist due to AAV-induced cellular stress, immunogenicity, and reduced durability of gene expression. Herein, we examined the efficacy of liver-directed gene transfer in FVIII knock-out mice by AAV8-GFP. Surprisingly, compared with control mice, FVIII knockout (F8TKO) mice showed significant delay in AAV8-GFP transfer in the liver. We found that the delay in liver-directed gene transfer in F8TKO mice was associated with absence of liver sinusoidal endothelial cell (LSEC) fenestration, which led to aberrant expression of several sinusoidal endothelial proteins, causing increased capillarization and decreased permeability of LSECs. This is the first study to link impaired liver-directed gene transfer to liver-endothelium maladaptive structural changes associated with FVIII deficiency in mice.


Hemophilia A , Animals , Endothelium , Genetic Therapy , Genetic Vectors/genetics , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/therapy , Humans , Liver/metabolism , Mice , Mice, Knockout
10.
Biomaterials ; 283: 121429, 2022 04.
Article En | MEDLINE | ID: mdl-35217482

The bleeding disorder hemophilia A (HA) is caused by a single-gene (F8) defect and its clinical symptom can be substantially improved by a small increase in the plasma coagulation factor VIII (FVIII) level. In this study, we used F8-defective human induced pluripotent stem cells from an HA patient (F8d-HA hiPSCs) and F8-corrected (F8c) HA hiPSCs produced by CRISPR/Cas9 genome engineering of F8d-HA hiPSCs. We obtained a highly enriched population of CD157+ cells from CRISPR/Cas9-edited F8c-HA hiPSCs. These cells exhibited multiple cellular and functional phenotypes of endothelial cells (ECs) with significant levels of FVIII activity, which was not observed in F8d-HA hiPSC-ECs. After transplantation, the engineered F8c-HA hiPSC-ECs dramatically changed bleeding episodes in HA animals and restored plasma FVIII activity. Notably, grafting a high dose of ECs substantially reduced the bleeding time during multiple consecutive bleeding challenges in HA mice, demonstrating a robust hemostatic effect (90% survival). Furthermore, the engrafted ECs survived more than 3 months in HA mice and reversed bleeding phenotypes against lethal wounding challenges. We also produced F8c-HA hiPSC-derived 3D liver organoids by assembling three different cell types in microwell devices and confirmed its therapeutic effect in HA animals. Our data demonstrate that the combination of genome-engineering and iPSC technologies represents a novel modality that allows autologous cell-mediated gene therapy for treating HA.


Hemophilia A , Induced Pluripotent Stem Cells , Animals , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Organoids/metabolism
11.
Drug Discov Today ; 27(1): 102-116, 2022 01.
Article En | MEDLINE | ID: mdl-34311113

Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.


Antibodies, Monoclonal, Humanized/pharmacology , Bone Remodeling/drug effects , Factor VIII , Immunity/drug effects , Drug Discovery/methods , Factor VIII/immunology , Factor VIII/metabolism , Hemophilia A/drug therapy , Hemophilia A/metabolism , Hemostasis/drug effects , Hemostasis/physiology , Humans
12.
Biomed Res Int ; 2021: 6483490, 2021.
Article En | MEDLINE | ID: mdl-34778454

BACKGROUND: The development of factor VIII (FVIII) inhibitor in patients with hemophilia A (PWHA) is a great challenge for hemophilia care. Both genetic and environmental factors led to complications in PWHA. The development of inhibitory antibodies is usually induced by the immune response. Tumor necrosis factor α (TNF-α), one of the cytokines, might contribute to its polymorphism. In this study, we investigated the clinical factors, level of serum TNF-α, and polymorphism of c.-308G > A TNF - α gene in inhibitor development in severe PWHA. METHODS: A cross-sectional study was conducted among all PWHA in West Java province. The clinical parameters, FVIII, FVIII inhibitor, and serum TNF-α level were assessed. The genotyping of -380G > A TNF-α gene polymorphism was performed using polymerase chain reaction and Sanger sequencing. RESULTS: Among the 258 PWHA, 216 (83.7%) were identified as severe PWHA. The FVIII inhibitor was identified in 90/216 (41.6%) of severe PWHA, consisting of 45 high-titer inhibitors (HTI) and 45 low-titer inhibitors (LTI). There was a significant correlation between serum TNF-α level and the development of HTI (p = 0.043). The cutoff point of serum TNF-α level, which can be used to differentiate between HTI and LTI, was 11.45 pg/mL. The frequency of FVIII replacement therapy was significant only in HTI of severe PWHA regarding serum TNF-α level (p = 0.028). There is no correlation between polymorphisms of -380G > A TNF-α gene and inhibitor development (p = 0.645). CONCLUSIONS: The prevalence of FVIII inhibitor in severe PWHA in West Java, Indonesia, was 41.6%. The frequency of replacement therapy is a risk factor for inhibitor development. Serum TNF-α level might be used to differentiate between high and low inhibitor levels in severe hemophilia A, and this might support decision making regarding treatment options for inhibitor in severe hemophilia A.


Factor VIII/immunology , Hemophilia A/metabolism , Tumor Necrosis Factor-alpha/genetics , Adolescent , Biomarkers, Pharmacological/blood , Child , Child, Preschool , Cross-Sectional Studies , Factor VIII/genetics , Factor VIII/metabolism , Hemophilia A/drug therapy , Humans , Indonesia , Infant , Isoantibodies/immunology , Male , Polymorphism, Single Nucleotide/genetics , Prognosis , Risk Factors , Tumor Necrosis Factor-alpha/blood , Young Adult
13.
J Biol Chem ; 297(6): 101397, 2021 12.
Article En | MEDLINE | ID: mdl-34774524

Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.


Factor VIII , Genetic Therapy , Genetic Vectors , Hemophilia A , Lentivirus , Transduction, Genetic , Factor VIII/biosynthesis , Factor VIII/genetics , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/therapy , Humans , K562 Cells
14.
Ann Agric Environ Med ; 28(3): 531-533, 2021 Sep 16.
Article En | MEDLINE | ID: mdl-34558281

Acquired haemophilia (AH) is a suddenly occurring severe blood diathesis that affects both males and females and is caused by autoantibodies which inhibit coagulation factor VIII. The report describes an unusual case of acquired haemophilia in which an epileptic seizure and haemorrhage into the ventricular system of the brain were the first manifestations of the disease. In addition, APTT was prolonged to 94.6 seconds and the factor VIII level was as low as 1.5%. The level of anti-FVIII antibody was extremely high - 272BU/ml. The patient did not undergo invasive diagnostic procedure or an operation. Recombinant factor VIIa was used to control the bleeding. In order to eradicate the inhibitor, the patient received prednisone and cyclophosphamide. Complete remission was achieved after 5.5 weeks of treatment.


Cerebral Ventricles/blood supply , Hemophilia A/complications , Seizures/etiology , Autoantibodies/blood , Cerebral Ventricles/diagnostic imaging , Factor VIII/metabolism , Hemophilia A/diagnostic imaging , Hemophilia A/metabolism , Hemophilia A/pathology , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Hemorrhage/pathology , Humans , Male , Middle Aged , Seizures/blood , Seizures/pathology
15.
Sci Rep ; 11(1): 15572, 2021 07 30.
Article En | MEDLINE | ID: mdl-34330995

Factor (F) VIII deficiency causes bleeding in haemophilia A patients because of the reduced formation of procoagulant enzyme thrombin, which is needed to make the blood clot. We measured the dynamics of coagulation in haemophilia A patients by measuring thrombin generation (TG). Additionally, we quantified the procoagulant process of prothrombin conversion and anticoagulant process of thrombin inhibitor complex formation. In haemophilia A, prothrombin conversion is severely reduced, causing TG to be low. Nevertheless, the thrombin inactivation capacity of these patients is comparable to that in healthy subjects, leading to a severe imbalance between procoagulant and anticoagulant processes and a subsequent increased bleeding risk. A novel therapy in haemophilia A is the targeting of anticoagulant pathway, e.g. thrombin inhibitor antithrombin (AT), to restore the haemostatic balance. We simulated the effect of AT reduction on TG in silico. Lowering AT levels restored TG dose-dependently and an AT reduction of 90-95% led to almost normal TG in most patients . However, the variation in response to AT reduction was large between patients, indicating that this approach should be tailored to each individual patients. Ideally, TG and thrombin dynamics simulation could in the future contribute to the management of patients undergoing AT targeting therapy.


Antithrombins/pharmacology , Hemophilia A/drug therapy , Adult , Blood Coagulation/drug effects , Hemophilia A/metabolism , Hemophilia B/drug therapy , Hemophilia B/metabolism , Humans , Male , Middle Aged , Prothrombin/metabolism , Thrombin/metabolism
16.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article En | MEDLINE | ID: mdl-34299267

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.


Genetic Therapy/methods , Hemophilia A/therapy , Hemophilia B/therapy , Animals , Factor IX/genetics , Factor IX/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/pathology , Hemophilia B/genetics , Hemophilia B/metabolism , Hemophilia B/pathology , Humans
17.
Am J Hum Genet ; 108(8): 1512-1525, 2021 08 05.
Article En | MEDLINE | ID: mdl-34242570

The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.


Exons , Factor VIII/genetics , Factor VIII/metabolism , Hemophilia A/pathology , Mutation , RNA Splicing , RNA, Messenger/genetics , Computational Biology , Hemophilia A/genetics , Hemophilia A/metabolism , Humans , Phenotype , Protein Biosynthesis , RNA, Messenger/metabolism
18.
Sci Rep ; 11(1): 12625, 2021 06 16.
Article En | MEDLINE | ID: mdl-34135429

Hemophilia A is an X-linked inherited blood coagulation disorder caused by the production and circulation of defective coagulation factor VIII protein. People living with this condition receive either prophylaxis or on-demand treatment, and approximately 30% of patients develop inhibitor antibodies, a serious complication that limits treatment options. Although previous studies performed targeted mutations to identify important residues of FVIII, a detailed understanding of the role of each amino acid and their neighboring residues is still lacking. Here, we addressed this issue by creating a residue interaction network (RIN) where the nodes are the FVIII residues, and two nodes are connected if their corresponding residues are in close proximity in the FVIII protein structure. We studied the characteristics of all residues in this network and found important properties related to disease severity, interaction to other proteins and structural stability. Importantly, we found that the RIN-derived properties were in close agreement with in vitro and clinical reports, corroborating the observation that the patterns derived from this detailed map of the FVIII protein architecture accurately capture the biological properties of FVIII.


Factor VIII/chemistry , Factor VIII/genetics , Hemophilia A/metabolism , Mutation , Amino Acid Motifs , Binding Sites , Factor VIII/metabolism , Hemophilia A/genetics , Humans , Machine Learning , Models, Molecular , Protein Conformation , Protein Stability
19.
Nat Commun ; 12(1): 1034, 2021 02 15.
Article En | MEDLINE | ID: mdl-33589617

Prime editing (PE) is a versatile genome editing technology, but design of the required guide RNAs is more complex than for standard CRISPR-based nucleases or base editors. Here we describe PrimeDesign, a user-friendly, end-to-end web application and command-line tool for the design of PE experiments. PrimeDesign can be used for single and combination editing applications, as well as genome-wide and saturation mutagenesis screens. Using PrimeDesign, we construct PrimeVar, a comprehensive and searchable database that includes candidate prime editing guide RNA (pegRNA) and nicking sgRNA (ngRNA) combinations for installing or correcting >68,500 pathogenic human genetic variants from the ClinVar database. Finally, we use PrimeDesign to design pegRNAs/ngRNAs to install a variety of human pathogenic variants in human cells.


CRISPR-Cas Systems , Gene Editing/methods , Genome, Human , RNA, Guide, Kinetoplastida/genetics , Base Pairing , Base Sequence , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Databases, Genetic , Fabry Disease/genetics , Fabry Disease/metabolism , Fabry Disease/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hemophilia A/genetics , Hemophilia A/metabolism , Hemophilia A/pathology , Humans , Models, Biological , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Mutation , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/metabolism , RNA, Guide, Kinetoplastida/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
20.
Blood ; 137(18): 2532-2543, 2021 05 06.
Article En | MEDLINE | ID: mdl-33512448

Mechanisms thought to regulate activated factor VIII (FVIIIa) cofactor function include A2-domain dissociation and activated protein C (APC) cleavage. Unlike A2-domain dissociation, there is no known phenotype associated with altered APC cleavage of FVIII, and biochemical studies have suggested APC plays a marginal role in FVIIIa regulation. However, the in vivo contribution of FVIIIa inactivation by APC is unexplored. Here we compared wild-type B-domainless FVIII (FVIII-WT) recombinant protein with an APC-resistant FVIII variant (FVIII-R336Q/R562Q; FVIII-QQ). FVIII-QQ demonstrated expected APC resistance without other changes in procoagulant function or A2-domain dissociation. In plasma-based studies, FVIII-WT/FVIIIa-WT demonstrated dose-dependent sensitivity to APC with or without protein S, whereas FVIII-QQ/FVIIIa-QQ did not. Importantly, FVIII-QQ demonstrated approximately fivefold increased procoagulant function relative to FVIII-WT in the tail clip and ferric chloride injury models in hemophilia A (HA) mice. To minimize the contribution of FV inactivation by APC in vivo, a tail clip assay was performed in homozygous HA/FV Leiden (FVL) mice infused with FVIII-QQ or FVIII-WT in the presence or absence of monoclonal antibody 1609, an antibody that blocks murine PC/APC hemostatic function. FVIII-QQ again demonstrated enhanced hemostatic function in HA/FVL mice; however, FVIII-QQ and FVIII-WT performed analogously in the presence of the PC/APC inhibitory antibody, indicating the increased hemostatic effect of FVIII-QQ was APC specific. Our data demonstrate APC contributes to the in vivo regulation of FVIIIa, which has the potential to be exploited to develop novel HA therapeutics.


Factor VIII/metabolism , Hemophilia A/pathology , Hemostasis , Protein C/metabolism , Recombinant Proteins/metabolism , Animals , Chlorides/toxicity , Factor VIII/genetics , Female , Ferric Compounds/toxicity , Hemophilia A/chemically induced , Hemophilia A/metabolism , Male , Mice , Mice, Inbred C57BL , Protein C/genetics , Recombinant Proteins/genetics
...