Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 525
Filter
1.
Front Immunol ; 15: 1419787, 2024.
Article in English | MEDLINE | ID: mdl-39011044

ABSTRACT

Puumala orthohantavirus-caused hemorrhagic fever with renal syndrome (PUUV-HFRS) is characterized by strong neutrophil activation. Neutrophils are the most abundant immune cell type in the circulation and are specially equipped to rapidly respond to infections. They are more heterogenous than previously appreciated, with specific neutrophil subsets recently implicated in inflammation and immunosuppression. Furthermore, neutrophils can be divided based on their density to either low-density granulocytes (LDGs) or "normal density" polymorphonuclear cell (PMN) fractions. In the current study we aimed to identify and characterize the different neutrophil subsets in the circulation of PUUV-HFRS patients. PMNs exhibited an activation of antiviral pathways, while circulating LDGs were increased in frequency following acute PUUV-HFRS. Furthermore, cell surface marker expression analysis revealed that PUUV-associated LDGs are primarily immature and most likely reflect an increased neutrophil production from the bone marrow. Interestingly, both the frequency of LDGs and the presence of a "left shift" in blood associated with the extent of thrombocytopenia, one of the hallmarks of severe HFRS, suggesting that maturing neutrophils could play a role in disease pathogenesis. These results imply that elevated circulating LDGs might be a general finding in acute viral infections. However, in contrast to the COVID-19 associated LDGs described previously, the secretome of PUUV LDGs did not show significant immunosuppressive ability, which suggests inherent biological differences in the LDG responses that can be dependent on the causative virus or differing infection kinetics.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Neutrophils , Puumala virus , Thrombocytopenia , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Neutrophils/immunology , Humans , Thrombocytopenia/immunology , Thrombocytopenia/virology , Puumala virus/immunology , Male , Middle Aged , Female , Adult , Neutrophil Activation , Aged
2.
Viruses ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066193

ABSTRACT

Puumala orthohantavirus (PUUV) is an emerging zoonotic virus endemic to Europe and Russia that causes nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome (HFRS). There are limited options for treatment and diagnosis of orthohantavirus infection, making the search for potential immunogenic candidates crucial. In the present work, various bioinformatics tools were employed to design conserved immunogenic peptides containing multiple epitopes of PUUV nucleocapsid protein. Eleven conserved peptides (90% conservancy) of the PUUV nucleocapsid protein were identified. Three conserved peptides containing multiple T and B cell epitopes were selected using a consensus epitope prediction algorithm. Molecular docking using the HPEP dock server demonstrated strong binding interactions between the epitopes and HLA molecules (ten alleles for each class I and II HLA). Moreover, an analysis of population coverage using the IEDB database revealed that the identified peptides have over 90% average population coverage across six continents. Molecular docking and simulation analysis reveal a stable interaction with peptide constructs of chosen immunogenic peptides and Toll-like receptor-4. These computational analyses demonstrate selected peptides' immunogenic potential, which needs to be validated in different experimental systems.


Subject(s)
Molecular Docking Simulation , Nucleocapsid Proteins , Peptides , Puumala virus , Puumala virus/immunology , Puumala virus/genetics , Peptides/immunology , Peptides/chemistry , Humans , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/chemistry , Computational Biology , Conserved Sequence , Amino Acid Sequence , Protein Binding
3.
Vopr Virusol ; 69(3): 285-289, 2024 Jul 05.
Article in Russian | MEDLINE | ID: mdl-38996377

ABSTRACT

INTRODUCTION: Hemorrhagic fever with renal syndrome (HFRS) is the most common zoonotic human viral disease in the Russian Federation. More than 98% of the HFRS cases are caused by Puumala orthohantavirus (PUU). Effective serological tests are required for laboratory diagnosis of HFRS. OBJECTIVE: Construction of an enzyme immunoassay (ELISA) test system for detection of specific antibodies using standard antigen in the form of highly purified inactivated PUU virus as immunosorbent. MATERIALS AND METHODS: Preparation of PUU virus antigen, designing the ELISA for detection of specific antibodies, developing parameters of the ELISA system, parallel titration of HFRS patients sera by fluorescent antibody technique (FAT) and the new ELISA. RESULTS AND DISCUSSION: For the first time, ELISA based on purified inactivated PUU virus as standard antigen directly absorbed onto immunoplate was developed. Parallel titration of 50 samples from HFRS patients blood sera using FAT and the developed ELISA showed high sensitivity and specificity of this ELISA, with 100% concordance of testing results and significant level of correlation between the titers of specific antibodies in the two assays. CONCLUSION: The ELISA based on purified inactivated PUU virus as an immunosorbent can be effectively used for HFRS serological diagnosis and for mass seroepidemiological studies.


Subject(s)
Antibodies, Viral , Antigens, Viral , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever with Renal Syndrome , Puumala virus , Sensitivity and Specificity , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/blood , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Humans , Puumala virus/immunology , Puumala virus/isolation & purification , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Viral/immunology , Antigens, Viral/blood , Animals
4.
PLoS Pathog ; 20(7): e1012390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038044

ABSTRACT

Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-ß affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Immunity, Innate , Interferon Type I , Lymphocytes , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Immunity, Innate/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Puumala virus/immunology , Male , Orthohantavirus/immunology , Female , Adult , Middle Aged , Cytokines/metabolism , Cytokines/immunology
5.
Vopr Virusol ; 69(2): 162-174, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38843022

ABSTRACT

The objective is to determine the complete nucleotide sequence and conduct a phylogenetic analysis of genome variants of the Puumala virus isolated in the Saratov region. MATERIALS AND METHODS: The samples for the study were field material collected in the Gagarinsky (formerly Saratovsky), Engelssky, Novoburassky and Khvalynsky districts of the Saratov region in the period from 2019 to 2022. To specifically enrich the Puumala virus genome in the samples, were used PCR and developed a specific primer panel. Next, the resulting PCR products were sequenced and the fragments were assembled into one sequence for each segment of the virus genome. To construct phylogenetic trees, the maximum parsimony algorithm was used. RESULTS: Genetic variants of the Puumala virus isolated in the Saratov region have a high degree of genome similarity to each other, which indicates their unity of origin. According to phylogenetic analysis, they all form a separate branch in the cluster formed by hantaviruses from other subjects of the Volga Federal District. The virus variants from the Republics of Udmurtia and Tatarstan, as well as from the Samara and Ulyanovsk regions, are closest to the samples from the Saratov region. CONCLUSION: The data obtained show the presence of a pronounced territorial confinement of strains to certain regions or areas that are the natural biotopes of their carriers. This makes it possible to fairly accurately determine the territory of possible infection of patients and/or the circulation of carriers of these virus variants based on the sequence of individual segments of their genome.


Subject(s)
Genome, Viral , Phylogeny , Puumala virus , Puumala virus/genetics , Puumala virus/classification , Puumala virus/isolation & purification , Humans , Russia/epidemiology , Genetic Variation , Hemorrhagic Fever with Renal Syndrome/virology , Animals
6.
Microbiol Spectr ; 12(7): e0381323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38856680

ABSTRACT

Laboratory diagnosis of orthohantavirus infection is primarily based on serology. However, for a confirmed serological diagnosis, evaluation of a follow-up serum sample is essential, which is time consuming and causes delay. Real-time reverse transcription polymerase chain reaction (RT-PCR) tests, if positive, provide an immediate and definitive diagnosis, and accurately identify the causative agent, where the discriminative nature of serology is suboptimal. We re-evaluated sera from orthohantavirus-suspected clinical cases in the Dutch regions of Twente and Achterhoek from July 2014 to April 2016 for the presence of Puumala orthohantavirus (PUUV), Tula orthohantavirus (TULV), and Seoul orthohantavirus (SEOV) RNA. PUUV RNA was detected in 11% of the total number (n = 85) of sera tested, in 50% of sera positive for anti-PUUV/TULV IgM (n = 16), and in 1.4% of sera negative or indeterminate for anti-PUUV/TULV IgM (n = 69). No evidence was found for the presence of TULV or SEOV viral RNA. Based on these findings, we propose two algorithms to implement real-time RT-PCR testing in routine orthohantavirus diagnostics, which optimally provide clinicians with early confirmed diagnoses and could prevent possible further invasive testing and treatment. IMPORTANCE: The addition of a real-time reverse transcription polymerase chain reaction test to routine orthohantavirus diagnostics may better aid clinical decision making than the use of standard serology tests alone. Awareness by clinicians and clinical microbiologists of this advantage may ultimately lead to a reduction in over-hospitalization and unnecessary invasive diagnostic procedures.


Subject(s)
Puumala virus , RNA, Viral , Real-Time Polymerase Chain Reaction , Puumala virus/isolation & purification , Puumala virus/genetics , Humans , Real-Time Polymerase Chain Reaction/methods , Netherlands/epidemiology , RNA, Viral/genetics , Antibodies, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Orthohantavirus/genetics , Orthohantavirus/isolation & purification , Orthohantavirus/classification , Immunoglobulin M/blood , Male , Female , Endemic Diseases , Hantavirus Infections/diagnosis , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Serologic Tests/methods
7.
J Med Virol ; 96(6): e29730, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860570

ABSTRACT

Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.


Subject(s)
Endocytosis , GTP-Binding Proteins , Hantaan virus , Virus Internalization , Humans , Actins/metabolism , Cell Line , Dynamin II/metabolism , Dynamin II/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Hantaan virus/physiology , HEK293 Cells , Hemorrhagic Fever with Renal Syndrome/virology , Host-Pathogen Interactions
8.
J Med Virol ; 96(6): e29759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899399

ABSTRACT

Pathogenic Eurasian hantaviruses cause hemorrhagic fever with renal syndrome (HFRS), which is characterized by acute kidney injury. The clinical course shows a broad range of severity and is influenced by direct and immune-mediated effects. The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation and predicts severity and outcome in various diseases. Therefore, we examined the role of NLR in HFRS caused by hantavirus Puumala (PUUV) and its association with disease severity and kidney injury. We detected elevated NLR levels on admission (NLRadm: median 3.82, range 1.75-7.59), which increased during acute HFRS. Maximum NLR levels (NLRmax: median 4.19, range 1.75-13.16) were 2.38-fold higher compared to the reference NLR level of 1.76 in the general population. NLR levels on admission correlate with markers of severity (length of hospital stay, serum creatinine) but not with other markers of severity (leukocytes, platelets, C-reactive protein, lactate dehydrogenase, serum albumin, proteinuria). Interestingly, levels of nephrin, which is a specific marker of podocyte damage in kidney injury, are highest on admission and correlate with NLRmax, but not with NLRadm. Together, we observed a correlation between systemic inflammation and the severity of HFRS, but our results also revealed that podocyte damage precedes these inflammatory processes.


Subject(s)
Biomarkers , Hemorrhagic Fever with Renal Syndrome , Lymphocytes , Neutrophils , Puumala virus , Severity of Illness Index , Humans , Hemorrhagic Fever with Renal Syndrome/blood , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/diagnosis , Male , Adult , Biomarkers/blood , Middle Aged , Female , Aged , Young Adult , Acute Kidney Injury/blood , Acute Kidney Injury/virology
9.
J Virol ; 98(7): e0078624, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38916398

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE: SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.


Subject(s)
Cytokines , Hemorrhagic Fever with Renal Syndrome , Severe Fever with Thrombocytopenia Syndrome , Humans , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/blood , Cytokines/blood , Male , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology , Middle Aged , Female , Cross-Sectional Studies , Adult , Aged , Phlebovirus/immunology
10.
PLoS Negl Trop Dis ; 18(5): e0012142, 2024 May.
Article in English | MEDLINE | ID: mdl-38739651

ABSTRACT

BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Parks, Recreational , Phylogeny , Seoul virus , Animals , Seoul virus/genetics , Seoul virus/isolation & purification , Seoul virus/classification , Rats/virology , France/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/veterinary , Hemorrhagic Fever with Renal Syndrome/transmission , Animals, Wild/virology , Humans , Cities/epidemiology , Rodent Diseases/virology , Rodent Diseases/epidemiology
11.
Virus Res ; 346: 199394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735439

ABSTRACT

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.


Subject(s)
CD4-Positive T-Lymphocytes , Hantaan virus , Hepatitis A Virus Cellular Receptor 1 , Humans , Hantaan virus/immunology , Hantaan virus/physiology , Jurkat Cells , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Virus Replication , Endocytosis , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/immunology , Host-Pathogen Interactions/immunology , Viral Tropism
12.
J Clin Virol ; 172: 105672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574565

ABSTRACT

Orthohantaviruses, transmitted primarily by rodents, cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome in the Americas. These viruses, with documented human-to-human transmission, exhibit a wide case-fatality rate, 0.5-40 %, depending on the virus species, and no vaccine or effective treatment for severe Orthohantavirus infections exists. In Europe, the Puumala virus (PUUV), carried by the bank vole Myodes glareolus, causes a milder form of HFRS. Despite the reliance on serology and PCR for diagnosis, the three genomic segments of Swedish wild-type PUUV have yet to be completely sequenced. We have developed a targeted hybrid-capture method aimed at comprehensive genomic sequencing of wild-type PUUV isolates and the identification of other Orthohantaviruses. Our custom-designed panel includes >11,200 probes covering the entire Orthohantavirus genus. Using this panel, we sequenced complete viral genomes from bank vole lung tissue, human plasma samples, and cell-cultured reference strains. Analysis revealed that Swedish PUUV isolates belong to the Northern Scandinavian lineage, with nucleotide diversity ranging from 2.8 % to 3.7 % among them. Notably, no significant genotypic differences were observed between the viral sequences from reservoirs and human cases except in the nonstructural protein. Despite the high endemicity of PUUV in Northern Sweden, these are the first complete Swedish wild-type PUUV genomes and substantially increase our understanding of PUUV evolution and epidemiology. The panel's sensitivity enables genomic sequencing of human samples with viral RNA levels reflecting the natural progression of infection and underscores our panel's diagnostic value, and could help to uncover novel Orthohantavirus transmission routes.


Subject(s)
Arvicolinae , Genome, Viral , Hemorrhagic Fever with Renal Syndrome , High-Throughput Nucleotide Sequencing , Puumala virus , Arvicolinae/virology , Animals , Humans , Puumala virus/genetics , Puumala virus/isolation & purification , Puumala virus/classification , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/epidemiology , Orthohantavirus/genetics , Orthohantavirus/isolation & purification , Orthohantavirus/classification , Phylogeny , Sweden/epidemiology , RNA, Viral/genetics
13.
Sci Rep ; 14(1): 9602, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671000

ABSTRACT

The fluctuation of human infections by the Puumala orthohantavirus (PUUV) in Germany has been linked to weather and phenology parameters that drive the population growth of its host species. We quantified the annual PUUV-outbreaks at the district level by binarizing the reported infections in the period 2006-2021. With these labels we trained a model based on a support vector machine classifier for predicting local outbreaks and incidence well in advance. The feature selection for the optimal model was performed by a heuristic method and identified five monthly weather variables from the previous two years plus the beech flowering intensity of the previous year. The predictive power of the optimal model was assessed by a leave-one-out cross-validation in 16 years that led to an 82.8% accuracy for the outbreak and a 0.457 coefficient of determination for the incidence. Prediction risk maps for the entire endemic area in Germany will be annually available on a freely-accessible permanent online platform of the German Environment Agency. The model correctly identified 2022 as a year with low outbreak risk, whereas its prediction for large-scale high outbreak risk in 2023 was not confirmed.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever with Renal Syndrome , Puumala virus , Germany/epidemiology , Humans , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/transmission , Incidence , Support Vector Machine , Weather
14.
J Med Virol ; 96(5): e29626, 2024 May.
Article in English | MEDLINE | ID: mdl-38654664

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high mortality rate. Differentiating between SFTS and hemorrhagic fever with renal syndrome (HFRS) is difficult and inefficient. Retrospective analysis of the medical records of individuals with SFTS and HFRS was performed. Clinical and laboratory data were compared, and a diagnostic model was developed based on multivariate logistic regression analyzes. Receiver operating characteristic curve analysis was used to evaluate the diagnostic model. Among the 189 patients, 113 with SFTS and 76 with HFRS were enrolled. Univariate analysis revealed that more than 20 variables were significantly associated with SFTS. Multivariate logistic regression analysis revealed that gender, especially female gender (odds ratio [OR]: 4.299; 95% confidence interval [CI]: 1.163-15.887; p = 0.029), age ≥65 years (OR: 16.386; 95% CI: 3.043-88.245; p = 0.001), neurological symptoms (OR: 12.312; 95% CI: 1.638-92.530; p = 0.015), leukopenia (<4.0 × 109/L) (OR: 17.355; 95% CI: 3.920-76.839; p < 0.001), and normal Cr (OR: 97.678; 95% CI: 15.483-616.226; p < 0.001) were significantly associated with SFTS but not with HFRS. The area under the curve of the differential diagnostic model was 0.960 (95% CI: 0.936-0.984), which was significantly better than that of each single factor. In addition, the model exhibited very excellent sensitivity and specificity (92.9% and 85.5%, respectively). In cases where HFRS and SFTS are endemic, a diagnostic model based on five parameters, such as gender, age ≥65 years, neurological symptoms, leukopenia and normal Cr, will facilitate the differential diagnosis of SFTS and HFRS in medical institutions, especially in primary care settings.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , ROC Curve , Severe Fever with Thrombocytopenia Syndrome , Humans , Female , Male , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/virology , Middle Aged , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Retrospective Studies , Aged , Diagnosis, Differential , Adult , Early Diagnosis , Aged, 80 and over , Sensitivity and Specificity
15.
Zoonoses Public Health ; 71(5): 489-502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38396153

ABSTRACT

AIMS: Haemorrhagic fever with renal syndrome (HFRS) is a significant zoonotic disease transmitted by rodents. The distribution of HFRS in the European part of Russia has been studied quite well; however, much less is known about the endemic area in the Russian Far East. The mutual influence of the epidemic situation in the border regions and the possibility of cross-border transmission of infection remain poorly understood. This study aims to identify the spatiotemporal hot spots of the incidence and the impact of environmental drivers on the HFRS distribution in the Russian Far East. METHODS AND RESULTS: A two-scale study design was performed. Kulldorf's spatial scan statistic was used to conduct spatiotemporal analysis at a regional scale from 2000 to 2020. In addition, an ecological niche model based on maximum entropy was applied to analyse the contribution of various factors and identify spatial favourability at the local scale. One spatiotemporal cluster that existed from 2002 to 2011 and located in the border area and one pure temporal cluster from 2004 to 2007 were revealed. The best suitability for orthohantavirus persistence was found along rivers, including those at the Chinese-Russian border, and was mainly explained by land cover, NDVI (as an indicator of vegetation density and greenness) and elevation. CONCLUSIONS: Despite the stable incidence in recent years in, targeted prevention strategies are still needed due to the high potential for HRFS distribution in the southeast of the Russian Far East.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/transmission , Hemorrhagic Fever with Renal Syndrome/virology , Humans , Russia/epidemiology , Animals , Spatio-Temporal Analysis , Zoonoses/epidemiology , Incidence , Environment
16.
Clin Microbiol Infect ; 30(6): 795-802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402954

ABSTRACT

OBJECTIVES: High incidences of haemorrhagic fever with renal syndrome (HFRS) have been reported in the southern Republic of Korea (ROK). A distinct southern genotype of Orthohantavirus hantanense (HTNV) was identified in Apodemus agrarius chejuensis on Jeju Island. However, its association with HFRS cases in southern ROK remains elusive. We investigated the potential of the southern HTNV genotype as an etiological agent of HFRS. METHODS: Samples from 22 patients with HFRS and 193 small mammals were collected in the southern ROK. The clinical characteristics of patients infected with the southern HTNV genotype were analysed. Amplicon-based MinION sequencing was employed for southern HTNV from patients and rodents, facilitating subsequent analyses involving phylogenetics and genetic reassortment. RESULTS: High-throughput sequencing of HTNV exhibited higher coverage with a cycle of threshold value below 32, acquiring nearly whole-genome sequences from six patients with HFRS and seven A. agrarius samples. The phylogenetic pattern of patient-derived HTNV demonstrated genetic clustering with HTNV from Apodemus species on Jeju Island and the southern Korean peninsula, revealing genetic reassortment in a single clinical sample between the M and S segments. DISCUSSION: These findings imply that the southern HTNV genotype has the potential to induce HFRS in humans. The phylogenetic inference demonstrates the diverse and dynamic characteristics of the southern HTNV tripartite genomes. Therefore, this study highlights the significance of active surveillance and amplicon sequencing for detecting orthohantavirus infections. It also raises awareness and caution for physicians regarding the emergence of a southern HTNV genotype as a cause of HFRS in the ROK.


Subject(s)
Genotype , Hemorrhagic Fever with Renal Syndrome , Phylogeny , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Republic of Korea/epidemiology , Animals , Male , Female , Genome, Viral , Middle Aged , Murinae/virology , Adult , Aged , Orthohantavirus/genetics , Orthohantavirus/classification , Orthohantavirus/isolation & purification , High-Throughput Nucleotide Sequencing , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Genomics
17.
Front Cell Infect Microbiol ; 12: 1084841, 2022.
Article in English | MEDLINE | ID: mdl-36590594

ABSTRACT

Introduction: Hantaan virus (HTNV) can cause endothelium injury in hemorrhagic fever with renal syndrome (HFRS) patients. Bystander activation of CD8+ T cells by virus infection has been shown that was involved in host injury, but it is unclear during HTNV infection. This project aimed to study the effect of bystander-activated CD8+ T cell responses in HTNV infection. Methods: The in vitro infection model was established to imitate the injury of endothelium in HFRS patients. Flow cytometry was performed to detect the expression of markers of tetramer+ CD8+ T cells and human umbilical vein endothelial cells (HUVECs). The levels of interleukin-15 (IL-15) in serum and supermanant were detected using ELISA kit. The expression of MICA of HUVECs was respectively determined by flow cytometry and western blot. The cytotoxicity of CD8+ T cells was assessed through the cytotoxicity assay and antibody blocking assay. Results: EBV or CMV-specific CD8+ T cells were bystander activated after HTNV infection in HFRS patients. HTNV-infected HUVECs in vitro could produce high levels of IL-15, which was positively correlated with disease severity and the expression of NKG2D on bystander-activated CD8+ T cells. Moreover, the elevated IL-15 could induce activation of CD122 (IL-15Rß)+NKG2D+ EBV/CMV-specific CD8+ T cells. The expression of IL-15Rα and ligand for NKG2D were upregulated on HTNV-infected HUVECs. Bystander-activated CD8+ T cells could exert cytotoxicity effects against HTNV-infected HUVECs, which could be enhanced by IL-15 stimulation and blocked by NKG2D antibody. Discussion: IL-15 induced bystander activation of CD8+ T cells through NKG2D, which may mediate endothelium injury during HTNV infection in HFRS patients.


Subject(s)
Bystander Effect , CD8-Positive T-Lymphocytes , Endothelium , Hemorrhagic Fever with Renal Syndrome , Interleukin-15 , NK Cell Lectin-Like Receptor Subfamily K , Humans , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections , Endothelium/immunology , Endothelium/injuries , Endothelium/physiopathology , Hantaan virus/immunology , Hemorrhagic Fever with Renal Syndrome/genetics , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Human Umbilical Vein Endothelial Cells , Interleukin-15/genetics , Interleukin-15/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Bystander Effect/immunology
18.
PLoS Negl Trop Dis ; 15(12): e0010006, 2021 12.
Article in English | MEDLINE | ID: mdl-34871302

ABSTRACT

BACKGROUND: Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. METHODOLOGY/PRINCIPAL FINDINGS: NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. CONCLUSIONS/SIGNIFICANCE: Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.


Subject(s)
Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , Puumala virus/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/virology , Lymphocyte Activation , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , Puumala virus/genetics , Young Adult
19.
Viruses ; 13(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34578397

ABSTRACT

Central and peripheral hormone deficiencies have been documented during and after acute hantavirus infection. Thrombocytopenia and coagulation abnormalities are common findings in haemorrhagic fever with renal syndrome (HFRS). The associations between coagulation and hormonal abnormalities in HFRS have not been studied yet. Forty-two patients diagnosed with Puumala virus (PUUV) infection were examined during the acute phase and on a follow-up visit approximately one month later. Hormonal defects were common during acute PUUV infection. Overt (clinical) hypogonadism was identified in 80% of the men and approximately 20% of the patients had overt hypothyroidism. At the one-month follow-up visit, six patients had central hormone deficits. Acute peripheral hormone deficits associated with a more severe acute kidney injury (AKI), longer hospital stay and more severe thrombocytopenia. Half of the patients with bleeding symptoms had also peripheral hormonal deficiencies. Patients with free thyroxine levels below the reference range had higher D-dimer level than patients with normal thyroid function, but no thromboembolic events occurred. Acute phase hormonal abnormalities associate with severe disease and altered haemostasis in PUUV infection.


Subject(s)
Hemorrhagic Fever with Renal Syndrome/blood , Hemostasis , Hormones/blood , Hormones/deficiency , Orthohantavirus/pathogenicity , Puumala virus/pathogenicity , Severity of Illness Index , Adult , Aged , Biomarkers/blood , Female , Hemorrhagic Fever with Renal Syndrome/physiopathology , Hemorrhagic Fever with Renal Syndrome/virology , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , Young Adult
20.
PLoS Negl Trop Dis ; 15(9): e0009707, 2021 09.
Article in English | MEDLINE | ID: mdl-34582439

ABSTRACT

BACKGROUND: Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. CONCLUSION/SIGNIFICANCE: Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS.


Subject(s)
Genome, Viral , Hantaan virus/isolation & purification , Hemorrhagic Fever with Renal Syndrome/virology , Urine/virology , Hantaan virus/classification , Hantaan virus/genetics , Hemorrhagic Fever with Renal Syndrome/urine , High-Throughput Nucleotide Sequencing , Humans , Multiplex Polymerase Chain Reaction , Phylogeny , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL