Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 501-507, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952089

ABSTRACT

Objective To investigate the effects of astragaloside IV(AS-IV) on the balance of T helper type 1 (Th1) and Th2 cells in mice with IgA nephropathy (IgAN) and its possible mechanism. Methods The IgAN model of BALB/c mice was established. Successfully modeled mice were randomly divided into four groups: model, AS-IV low dose, AS-IV medium dose and AS-IV high dose groups, with 10 mice in each group. Another 10 mice served as the control group. Mice in the low, medium and high dose groups were administered 12.5, 25 and 50 mg/kg AS-IV suspension (prepared in normal saline) by gavage, while the control and model groups were given an equivalent volume of normal saline. The 24-hour urinary protein (24 h UPr) content and urine red blood cell count were measured in each group. The levels of blood urea nitrogen (BUN), serum creatinine (Scr) and albumin (ALB) were determined. Serum interferon γ (IFN-γ), interleukin 4 (IL-4) and IL-10 levels were detected by ELISA. The ratio of Th1/Th2 cells in peripheral blood of mice was detected using flow cytometry. Histopathological changes in the kidney of mice were observed by HE staining. RT-PCR and Western blot were used to detect the mRNA and protein expressions of T cell immunoglobulin and mucin domain gene 1 (TIM-1), Toll-like receptor 4 (TLR4) in mouse kidney tissue. Results Compared with the model group, in weeks 12 and 15, the urine red blood cell count, 24 h UPr, BUN, Scr, levels of IL-4 and IL-10, the proportion of Th2 cells, as well as the mRNA and protein expression levels of TIM-1 and TLR4 were significantly decreased in the low, medium and high dose groups of AS-IV, and the levels of ALB, IFN-γ, the proportion of Th1 cells and Th1/Th2 cell ratio were increased, with the high-dose group showing the best effects. Conclusion AS-IV can inhibit TIM-1 signaling pathway, increase the Th1/Th2 cell ratio, inhibit the inflammatory reaction, and alleviate the renal injury in IgAN mice.


Subject(s)
Glomerulonephritis, IGA , Hepatitis A Virus Cellular Receptor 1 , Mice, Inbred BALB C , Saponins , Signal Transduction , Th1 Cells , Th2 Cells , Triterpenes , Animals , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Triterpenes/pharmacology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/immunology , Saponins/pharmacology , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Signal Transduction/drug effects , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Interleukin-4/genetics , Interleukin-4/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interferon-gamma/metabolism , Interferon-gamma/genetics , Male , Female
2.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918734

ABSTRACT

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Subject(s)
Biomarkers , Caloric Restriction , Glomerular Filtration Rate , Kidney Tubules , Metformin , Polycystic Kidney, Autosomal Dominant , Humans , Metformin/therapeutic use , Polycystic Kidney, Autosomal Dominant/urine , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/diet therapy , Male , Female , Biomarkers/urine , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/drug effects , Adult , Lipocalin-2/urine , Chemokine CCL2/urine , Fatty Acid-Binding Proteins/urine , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Chitinase-3-Like Protein 1/urine , Hypoglycemic Agents/therapeutic use
3.
Sci Rep ; 14(1): 13464, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866845

ABSTRACT

Environmental exposure to heavy metals and metalloids, originating from sources such as mining and manufacturing activities, has been linked to adverse renal effects. This cross-sectional study assessed children's exposure to these elements and its association with urinary kidney injury molecule-1 (KIM-1). We analyzed data from 99 school-aged children residing in nine localities within the state of Colima, Mexico, during the latter half of 2023. Levels of 23 metals/metalloids and urinary KIM-1 were measured using inductively coupled plasma mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay, respectively. Detectable levels of these contaminants were found in over 91% of participants, with varied exposure profiles observed across locations ( p = 0.019). After adjusting for confounding factors like gender, age, and locality, higher levels of six metals/metalloids (boron, cadmium, cesium, lithium, selenium, zinc) were significantly associated with increased KIM-1 levels. Tailored mitigation efforts are crucial to protect children from regional pollutant burdens. However, limitations exist, as our study did not capture all potential factors influencing heavy metal/metalloid and KIM-1 levels.


Subject(s)
Environmental Exposure , Hepatitis A Virus Cellular Receptor 1 , Metals, Heavy , Humans , Child , Female , Male , Cross-Sectional Studies , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Metals, Heavy/analysis , Metals, Heavy/urine , Environmental Exposure/analysis , Environmental Exposure/adverse effects , Mexico , Metalloids/urine , Metalloids/analysis , Environmental Pollutants/analysis , Environmental Pollutants/urine , Adolescent
4.
Crit Care Explor ; 6(7): e1109, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38922318

ABSTRACT

IMPORTANCE: COVID-19 may injure the kidney tubules via activation of inflammatory host responses and/or direct viral infiltration. Most studies of kidney injury in COVID-19 lacked contemporaneous controls or measured kidney biomarkers at a single time point. OBJECTIVES: To better understand mechanisms of acute kidney injury in COVID-19, we compared kidney outcomes and trajectories of tubular injury, viability, and function in prospectively enrolled critically ill adults with and without COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The COVID-19 Host Response and Outcomes study prospectively enrolled patients admitted to ICUs in Washington State with symptoms of lower respiratory tract infection, determining COVID-19 status by nucleic acid amplification on arrival. MAIN OUTCOMES AND MEASURES: We evaluated major adverse kidney events (MAKE) defined as a doubling of serum creatinine, kidney replacement therapy, or death, in 330 patients after inverse probability weighting. In the 181 patients with available biosamples, we determined trajectories of urine kidney injury molecule-1 (KIM-1) and epithelial growth factor (EGF), and urine:plasma ratios of endogenous markers of tubular secretory clearance. RESULTS: At ICU admission, the mean age was 55 ± 16 years; 45% required mechanical ventilation; and the mean serum creatinine concentration was 1.1 mg/dL. COVID-19 was associated with a 70% greater occurrence of MAKE (relative risk 1.70; 95% CI, 1.05-2.74) and a 741% greater occurrence of KRT (relative risk 7.41; 95% CI, 1.69-32.41). The biomarker cohort had a median of three follow-up measurements. Urine EGF, secretory clearance ratios, and estimated glomerular filtration rate (eGFR) increased over time in the COVID-19 negative group but remained unchanged in the COVID-19 positive group. In contrast, urine KIM-1 concentrations did not significantly change over the course of the study in either group. CONCLUSIONS: Among critically ill adults, COVID-19 is associated with a more protracted course of proximal tubular dysfunction and reduced eGFR despite similar degrees of kidney injury.


Subject(s)
Acute Kidney Injury , COVID-19 , Critical Illness , Hepatitis A Virus Cellular Receptor 1 , Humans , COVID-19/physiopathology , Middle Aged , Male , Acute Kidney Injury/etiology , Acute Kidney Injury/virology , Female , Prospective Studies , Aged , Hepatitis A Virus Cellular Receptor 1/analysis , Hepatitis A Virus Cellular Receptor 1/metabolism , SARS-CoV-2 , Adult , Biomarkers/blood , Biomarkers/urine , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Creatinine/blood , Creatinine/urine , Intensive Care Units , Washington/epidemiology , Epidermal Growth Factor/blood , Epidermal Growth Factor/urine , Renal Replacement Therapy
5.
Sci Rep ; 14(1): 12901, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839764

ABSTRACT

Early kidney injury may be detected by urinary markers, such as beta-2 microglobulin (B2M), tissue inhibitor of metalloproteinases-2 (TIMP-2), insulin-like growth factor-binding protein 7 (IGFBP7), kidney injury molecule-1 (KIM-1) and/or neutrophil gelatinase-associated lipocalin (NGAL). Of these biomarkers information on pathophysiology and reference ranges in both healthy and diseased populations are scarce. Differences in urinary levels of B2M, TIMP-2, IGFBP7, KIM-1 and NGAL were compared 24 h before and after nephrectomy in 38 living kidney donors from the REnal Protection Against Ischaemia-Reperfusion in transplantation study. Linear regression was used to assess the relation between baseline biomarker concentration and kidney function 1 year after nephrectomy. Median levels of urinary creatinine and creatinine standardized B2M, TIMP-2, IGFBP7, KIM-1, NGAL, and albumin 24 h before nephrectomy in donors were 9.4 mmol/L, 14 µg/mmol, 16 pmol/mmol, 99 pmol/mmol, 63 ng/mmol, 1390 ng/mmol and 0.7 mg/mmol, with median differences 24 h after nephrectomy of - 0.9, + 1906, - 7.1, - 38.3, - 6.9, + 2378 and + 1.2, respectively. The change of donor eGFR after 12 months per SD increment at baseline of B2M, TIMP-2, IGFBP7, KIM-1 and NGAL was: - 1.1, - 2.3, - 0.7, - 1.6 and - 2.8, respectively. Urinary TIMP-2 and IGFBP7 excretion halved after nephrectomy, similar to urinary creatinine, suggesting these markers predominantly reflect glomerular filtration. B2M and NGAL excretion increased significantly, similar to albumin, indicating decreased proximal tubular reabsorption following nephrectomy. KIM-1 did not change considerably after nephrectomy. Even though none of these biomarkers showed a strong relation with long-term donor eGFR, these results provide valuable insight into the pathophysiology of these urinary biomarkers.


Subject(s)
Biomarkers , Insulin-Like Growth Factor Binding Proteins , Nephrectomy , Tissue Inhibitor of Metalloproteinase-2 , beta 2-Microglobulin , Humans , Nephrectomy/methods , Nephrectomy/adverse effects , Tissue Inhibitor of Metalloproteinase-2/urine , beta 2-Microglobulin/urine , Male , Female , Middle Aged , Insulin-Like Growth Factor Binding Proteins/urine , Adult , Biomarkers/urine , Kidney Transplantation/adverse effects , Living Donors , Kidney/surgery , Kidney/physiopathology , Kidney/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Creatinine/urine , Lipocalin-2/urine
6.
Front Immunol ; 15: 1360219, 2024.
Article in English | MEDLINE | ID: mdl-38745667

ABSTRACT

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Subject(s)
B-Lymphocytes, Regulatory , Hepatitis A Virus Cellular Receptor 1 , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Female , Male , Adult , Memory B Cells/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Cytokines/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Lymphocyte Activation/immunology , Middle Aged , Cells, Cultured , Cell Differentiation/immunology , Immunologic Memory
7.
J Pathol ; 263(3): 315-327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721910

ABSTRACT

Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Acute Kidney Injury , Hemolysis , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2 , Mice, Knockout , Animals , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Hemoglobins/metabolism , Mice , Cilastatin/pharmacology , Disease Models, Animal , Phenylhydrazines , Mice, Inbred C57BL , Male , Hepatitis A Virus Cellular Receptor 1/metabolism , Alpha-Globulins/metabolism , Humans
8.
Virus Res ; 346: 199394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735439

ABSTRACT

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.


Subject(s)
CD4-Positive T-Lymphocytes , Hantaan virus , Hepatitis A Virus Cellular Receptor 1 , Humans , Hantaan virus/immunology , Hantaan virus/physiology , Jurkat Cells , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Virus Replication , Endocytosis , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/immunology , Host-Pathogen Interactions/immunology , Viral Tropism
9.
Bull Exp Biol Med ; 176(5): 567-571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724809

ABSTRACT

The expression of marker proteins of acute kidney injury after administration of high doses of lithium carbonate was assessed to evaluate the possibility of lithium use in neutron capture therapy. In mice with implanted skin melanoma B16, the expression of Kim1 (kidney injury molecule 1) and NGAL (neutrophil gelatinase-associated lipocalin) proteins in the kidneys was evaluated immunohistochemically 15, 30, 90, 180 min, and 7 days after peroral administration of lithium carbonate at single doses of 300 and 400 mg/kg. An increase in the expression of the studied proteins was found in 30 and 90 min after administration of 400 mg/kg lithium carbonate, however, 7 days after the drug administration, the expression returned to the level observed in the control group. It can be suggested that single administration of lithium carbonate in the studied doses effective for lithium neutron capture therapy will not significantly affect the renal function.


Subject(s)
Acute Kidney Injury , Hepatitis A Virus Cellular Receptor 1 , Lipocalin-2 , Lithium Carbonate , Animals , Lipocalin-2/metabolism , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Lithium Carbonate/administration & dosage , Hepatitis A Virus Cellular Receptor 1/metabolism , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/drug therapy , Biomarkers/metabolism , Biomarkers/blood
10.
Ren Fail ; 46(1): 2346284, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38757700

ABSTRACT

BACKGROUND: Chronic liver disease is a common and important clinical problem.Hepatorenal syndrome (HRS) is a life threatening complication. Serum creatinine (Cr) remains the only conventional indicator of renal function. However, the interpretation of serum Cr level can be confounded by malnutrition and reduced muscle mass often observed in patients with severe liver disease. Here, we present a cross-sectional study to explore the sensitivity and specificity of other markers as urinary KIM-1 and NGAL for cases of HRS. METHODS: Cross-sectional study was conducted on 88 patients who were admitted to Alexandria main university hospital. Enrolled patients were divided in two groups; group 1: patients with advanced liver cirrhosis (child B and C) who have normal kidney functions while group 2: patients who developed HRS. Stata© version 14.2 software package was used for analysis. RESULTS: Group 1 included 18 males and 26 females compared to 25 males and 19 females in group 2 (p = 0.135). Only the urinary KIM-1 showed a statistically significant difference between both groups in the multivariate logistic regression analysis adjusted for gender, serum bilirubin, serum albumin, INR, serum K, AST and ALT levels. CONCLUSION: In conclusion, our study aligns with prior research, as seen in the consistent findings regarding Urinary NGAL elevation in cirrhotic patients with AKI. Urinary KIM-1, independent of Urinary NGAL, may have a role in precisely distinguishing between advanced liver cirrhosis and HRS and merits further exploration.


Subject(s)
Biomarkers , Hepatitis A Virus Cellular Receptor 1 , Hepatorenal Syndrome , Lipocalin-2 , Liver Cirrhosis , Humans , Male , Female , Hepatitis A Virus Cellular Receptor 1/analysis , Hepatitis A Virus Cellular Receptor 1/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/urine , Cross-Sectional Studies , Middle Aged , Lipocalin-2/urine , Lipocalin-2/blood , Biomarkers/urine , Biomarkers/blood , Adult , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/urine , Hepatorenal Syndrome/diagnosis , Logistic Models , Aged , Creatinine/blood , Creatinine/urine , Sensitivity and Specificity
11.
J Feline Med Surg ; 26(4): 1098612X241238923, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647460

ABSTRACT

OBJECTIVES: The aim of the present study was to establish a reference interval (RI) for urine kidney injury molecule-1 (KIM-1) in healthy cats. METHODS: History, physical examination, blood pressure, and feline immunodeficiency virus and feline leukemia virus serology status were determined. A complete blood cell count, serum biochemical profile, urinalysis and kidney ultrasound were performed, and N-terminal pro-brain natriuretic peptide, total thyroxine (TT4) and urine KIM-1 were measured. An RI was calculated and the effect of age, sex, body condition score (BCS), blood pressure, symmetric dimethylarginine (SDMA), serum creatinine concentration (SCr), phosphorus, TT4, urine specific gravity (USG) and mid-sagittal kidney length on urine KIM-1 was evaluated using a general linear model. RESULTS: Of 69 recruited cats, 50 met the inclusion criteria. There were 35 male cats and 15 female cats, with a median age of 4.3 years (range 1.0-12.3), median weight of 5.11 kg (range 2.52-8.45) and median BCS of 6/9 (range 3-8). The median serum concentrations were SDMA 11.0 µg/dl (range 2-14), SCr 88.5 µmol/l (range 47-136), phosphorus 1.41 mmol/l (range 0.8-2.2) and TT4 32.0 nmol/l (range 17-51). Median USG was 1.057 (range 1.035-1.076), mid-sagittal left kidney length was 3.50 cm (range 2.94-4.45) and mid-sagittal right kidney length was 3.70 cm (range 3.06-4.55). The derived RI for urine KIM-1 was 0.02-0.68. USG was a significant (P <0.001) predictor of urine KIM-1. Individually, age, sex, blood pressure, BCS, SDMA, SCr, phosphorus, TT4 and mid-sagittal kidney length were not significant predictors of urine KIM-1. In a multivariate model, if combined with USG, SDMA concentration was predictive (P = 0.030) of urine KIM-1. CONCLUSIONS AND RELEVANCE: Urine concentration was significantly correlated with urine KIM-1, which will be an important consideration when interpreting findings in cats with potential kidney injury.


Subject(s)
Hepatitis A Virus Cellular Receptor 1 , Animals , Cats , Female , Male , Biomarkers/urine , Biomarkers/blood , Hepatitis A Virus Cellular Receptor 1/metabolism , Reference Values
13.
Appl Physiol Nutr Metab ; 49(6): 844-854, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452351

ABSTRACT

Industrial workers regularly perform physical labor under high heat stress, which may place them at risk for dehydration and acute kidney injury. Current guidelines recommend that workers should consume sports drinks to maintain euhydration during work shifts. However, the impact of fructose sweetened sports drinks on acute kidney injury risk is unknown. The purpose of this study was to investigate the effects of sports drink consumption on markers of acute kidney injury following simulated industrial work in the heat. Twenty males completed two matched 2 h simulated industrial work trial visits in a warm and humid environment (30 °C and 55% relative humidity). During and following the bout of simulated work, participants consumed either a commercially available sports drink or a noncaloric placebo. Urine and blood samples, collected pre-, post-, and 16 h post-work were assayed for markers of hydration (plasma/urine osmolality, and urine specific gravity) and acute kidney injury (KIM-1 and NGAL). There were no differences in physiological or perceptual responses to the bout of work (interaction p > 0.05 for all indices), and markers of hydration were similar between trials (interaction p > 0.05 for all indices). KIM-1 (Placebo: Δ Ln 1.18 ± 1.64; Sports drink: Δ Ln 1.49 ± 1.10 pg/mL; groupwide d = 0.89, p < 0.001) and NGAL (Placebo: Δ Ln 0.44 ± 1.11; Sports drink: Δ Ln 0.67 ± 1.22 pg/mL; groupwide d = 0.39, p = 0.03) were elevated pre- to post-work, but there were no differences between trials (interaction p > 0.05). These data provide no evidence that consumption of fructose sweetened sports drinks increases the risk of acute kidney injury during physical work in the heat.


Subject(s)
Acute Kidney Injury , Biomarkers , Cross-Over Studies , Dehydration , Hot Temperature , Humans , Male , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/urine , Adult , Hot Temperature/adverse effects , Young Adult , Dehydration/urine , Biomarkers/blood , Biomarkers/urine , Hepatitis A Virus Cellular Receptor 1/metabolism , Fructose/adverse effects , Sugar-Sweetened Beverages/adverse effects , Lipocalin-2/urine , Lipocalin-2/blood , Heat Stress Disorders/urine , Organism Hydration Status , Osmolar Concentration , Risk Factors , Beverages , Industry
14.
Clin Pharmacol Ther ; 115(6): 1441-1449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38451017

ABSTRACT

The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with chronic kidney disease (CKD) with low albuminuria levels have not been established. This study aimed to compare the effects of dapagliflozin on kidney injury biomarkers in patients with CKD stratified by albuminuria level. We prospectively enrolled healthy volunteers (HVs; n = 20) and patients with CKD (n = 54) with and without diabetes mellitus. Patients with CKD were divided into two age-matched and sex-matched subgroups according to urinary albumin-creatinine ratio (uACR) levels (<300 mg/g and ≥300 mg/g). The CKD group received dapagliflozin (10 mg/day). Urine samples were collected before treatment and after 3 and 6 months of dapagliflozin. Urinary kidney injury molecule-1 (KIM-1), interleukin-1ß (IL-1ß), and mitochondrial DNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND1) copy number were measured. The estimated glomerular filtration rate (eGFR) of patients with CKD was lower than that of HVs (P < 0.001). During the study period, eGFR decreased and uACR did not change in the CKD group. Kidney injury markers were significantly elevated in patients with CKD compared with those in HVs. Dapagliflozin reduced urinary KIM-1, IL-1ß, and mtDNA copy number in patients with CKD after 6 months of treatment. In further, the levels of urinary KIM-1 and IL-1ß, patients with CKD decreased after 6 months of dapagliflozin treatment regardless of albuminuria level. Dapagliflozin reduced urinary kidney injury biomarkers in patients with CKD, regardless of albuminuria level. These findings suggest that SGLT2 inhibitors may also attenuate the progression of low albuminuric CKD.


Subject(s)
Albuminuria , Benzhydryl Compounds , Biomarkers , Glomerular Filtration Rate , Glucosides , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Benzhydryl Compounds/therapeutic use , Albuminuria/urine , Albuminuria/drug therapy , Male , Female , Glucosides/therapeutic use , Biomarkers/urine , Renal Insufficiency, Chronic/urine , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/physiopathology , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Prospective Studies , Aged , Glomerular Filtration Rate/drug effects , Hepatitis A Virus Cellular Receptor 1/metabolism , Adult , Interleukin-1beta/urine , Case-Control Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/complications
15.
J Am Soc Nephrol ; 35(6): 795-808, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38353655

ABSTRACT

Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.


Subject(s)
Acute Kidney Injury , Hepatitis A Virus Cellular Receptor 1 , Humans , Hepatitis A Virus Cellular Receptor 1/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/immunology , Apoptosis , Animals , Biomarkers/metabolism
16.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047470

ABSTRACT

Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypertension , Stroke , Animals , Female , Rats , Aldosterone/metabolism , Angiotensin II/metabolism , Blood Pressure , Eplerenone/pharmacology , Hepatitis A Virus Cellular Receptor 1/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypertension/metabolism , Kidney/metabolism , NG-Nitroarginine Methyl Ester , Pravastatin/pharmacology , Rats, Wistar , Receptors, Mineralocorticoid , RNA, Messenger/metabolism , Simvastatin
17.
Adv Med Sci ; 68(1): 79-85, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36774664

ABSTRACT

PURPOSE: Hyperuricemia may lead to silent tissue damage and increase the risk of some diseases, including kidney diseases. Increased serum uric acid concentration induces inflammatory pathways and promotes kidney damage. This study aimed to determine whether hyperuricemia influences the levels of urinary kidney injury markers in children and adolescents with hyperuricemia, assessed by the urinary concentrations of interleukin-18, a biomarker of inflammation, and kidney injury molecule-1 (KIM-1), a biomarker of kidney injury. MATERIAL AND METHODS: The study included 73 children and adolescents (32 males and 41 females) aged 2-18 years. They were divided into two groups: hyperuricemia (HU) group (n â€‹= â€‹48) and normouricemia - reference group (R) (n â€‹= â€‹25). The concentrations of urinary interleukin-18 and KIM-1 were measured using an ELISA kit and were normalized for urinary creatinine (cr.) concentration. RESULTS: The median interleukin-18/cr. Levels in the HU group were significantly higher than in the R group (median, Q1-Q3) 21.83 (11.32-35.96) and 12.68 (7.11-24.04), respectively, (p â€‹< â€‹0.05). The KIM-1/cr. in the HU group and the R group were (median, Q1-Q3) 0.79 (0.45-1.03) and 0.81 (0.59-1.01), respectively, and the difference was not significant. KIM-1/cr. did not differ between the groups. Interleukin-18/cr. ratio correlated positively with serum uric acid concentration (r â€‹= â€‹0.24, p â€‹< â€‹0.05). CONCLUSIONS: Interleukin-18/cr., but not KIM-1/cr. was higher in children with hyperuricemia. Hyperuricemia results in increased IL-18 in urine, in absence of other markers of kidney injury, suggesting inflammation in the kidney. Additional studies on the adults should be done, to confirm this hypothesis.


Subject(s)
Hyperuricemia , Kidney Diseases , Male , Adult , Female , Humans , Child , Adolescent , Interleukin-18/metabolism , Hyperuricemia/metabolism , Uric Acid , Hepatitis A Virus Cellular Receptor 1/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Biomarkers/metabolism , Inflammation/metabolism
18.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142146

ABSTRACT

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Subject(s)
Endothelial Cells/pathology , Hepatitis A Virus Cellular Receptor 1/metabolism , MicroRNAs , Angiotensin-Converting Enzyme 2 , COVID-19 , Dengue , Endothelial Cells/metabolism , Hemorrhagic Fever, Ebola , Humans , Immunoglobulins , MicroRNAs/genetics , Mucins , Neuropilin-1/genetics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Stroke , Zika Virus , Zika Virus Infection
19.
Front Endocrinol (Lausanne) ; 13: 937109, 2022.
Article in English | MEDLINE | ID: mdl-35966054

ABSTRACT

Background: T-cell immunoglobulin and mucin domain (Tim) proteins are immunomodulatory molecules that play key roles in the regulation of T-cell activation. Published studies have reported that Tim molecules are involved in the pathogenesis of certain autoimmune diseases. Type 1 diabetes (T1D) is an autoimmune disease in which T cells mediate the destruction of islet ß cells. However, the expression of Tim molecules in T1D remains unclear. In this study, we measured the expression of Tim family molecules as well as T-cell subset-specific transcription factors in T1D patients, and we explored the possible involvement of Tim molecules in the pathogenesis of T1D. Methods: Ninety T1D patients, Thirty-six type 2 diabetes (T2D) patients and forty healthy controls (HCs) were recruited for this study. Peripheral blood mononuclear cells (PBMCs) were isolated, RNA was extracted from the PBMCs and reverse transcribed into cDNA, and gene expression patterns were analysed by RT-qPCR. The expression of Tim molecules in different T-cell subsets was analysed by flow cytometry. Results: Compared with that in HCs, the mRNA expression of Tim-1 and RORC was increased in T1D patients (P=0.0355 and P=0.0423, respectively), while the expression of Tim-3 was decreased (P=0.0013). In addition, compared with HCs, the ratio of Tim-3 to Tim-1 expression in diabetic patients was decreased (P<0.0001 for T1D and P=0.0387 for T2D). The ratios of T-Bet to GATA3 expression and RORC to FOXP3 expression were higher in T1D patients than in HCs (P=0.0042 and P=0.0066, respectively). Furthermore, the T1D patients with defective islet function had more significant imbalances in the Tim-3/Tim-1 and RORC/FOXP3 ratios (P<0.0001, and P=0.001, respectively). Moreover, Both Tim-3 expression in CD4+ T cells and the Tim-3 to Tim-1 ratio were elevated in T1D in the remission phase compared to T1D. Conclusion: Our study revealed altered expression of Tim molecules in T1D patients. The imbalanced ratios of Tim-3/Tim-1 expression were more pronounced in T1D patients with defective islet function. However, alterations in Tim molecule expression are mitigated in T1D in the remission phase. All these findings suggest that Tim family molecules may be involved in the pathogenesis of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Forkhead Transcription Factors , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
20.
Commun Biol ; 5(1): 783, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922481

ABSTRACT

The prevalence of kidney stones is increasing and its recurrence rate within the first 5 years is over 50%. No treatments that prevent the occurrence/recurrence of stones have reached the clinic. Here, we show that AIM (also called CD5L) suppresses stone development and improves stone-associated physical damages. The N-terminal domain of AIM associates with calcium oxalate crystals via charge-based interaction to impede the development of stones, whereas the 2nd and C-terminal domains capture the inflammatory DAMPs to promote their phagocytic removal. Accordingly, when stones were induced by glyoxylate in mice, recombinant AIM (rAIM) injection dramatically reduced stone development. Expression of injury molecules and inflammatory cytokines in the kidney and overall renal dysfunction were abrogated by rAIM. Among various negatively charged substances, rAIM was most effective in stone prevention due to its high binding affinity to crystals. Furthermore, only AIM was effective in improving the physical complaints including bodyweight-loss through its DAMPs removal effect. We also found that tubular KIM-1 may remove developed stones. Our results could be the basis for the development of a comprehensive therapy against kidney stone disease.


Subject(s)
Kidney Calculi , Animals , Apoptosis Regulatory Proteins , Calcium Oxalate/metabolism , Glyoxylates , Hepatitis A Virus Cellular Receptor 1/metabolism , Kidney/metabolism , Kidney Calculi/chemistry , Kidney Calculi/metabolism , Kidney Calculi/prevention & control , Mice , Receptors, Scavenger
SELECTION OF CITATIONS
SEARCH DETAIL
...