Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.549
1.
J Infect Dev Ctries ; 18(5): 779-786, 2024 May 30.
Article En | MEDLINE | ID: mdl-38865405

INTRODUCTION: Human immunodeficiency virus (HIV) / hepatitis B virus (HBV) causes higher rates of liver disease compared to infection with just one virus. Co-infection can accelerate the progression to liver fibrosis or hepatocellular carcinoma and disturb the treatment response. APOBEC3G is a host defense factor which interferes with HIV-1 and HBV. We aimed to determine the prevalence of hepatitis B surface antigen (HBsAg) among HIV-infected patients and seronegative controls, and screen the HIV/HBV population for APOBEC3G variants rs8177832, rs35228531 and rs2294367, previously associated with HIV-1 infection susceptibility in Morocco. METHODOLOGY: A case control study was conducted on 404 individuals (204 HIV-infected and 200 eligible blood donors) from April to November 2021. HBsAg was measured on the Roche Cobas e411 automatic analyzer (Roche Diagnostics, Basel, Switzerland) and APOBEC3G polymorphisms were identified using the TaqMan genotyping allelic discrimination method. Fisher Exact test, odds ratio (OR) with 95% confidence interval (CI), and haplotype frequencies were calculated. RESULTS: Of the 204 HIV-1 seropositive patients and 200 controls, 4.9% (95%CI: 2.38-8.83) and 2.50% (95% CI: 0.82-5.74) were HBsAg-positive respectively. There was a significant association between increasing age (> 40 years) and HBV infection among controls (p = 0.04). The distribution of genotypes and alleles frequencies of APOBEC3G variants was heterogenous and five different haplotypes with frequencies ≥ 5% were obtained, of which ACC (rs8177832, rs35228531, rs2294367) was the most prevalent. CONCLUSIONS: HBV co-infection is common among HIV-1 infected individuals in Morocco. Efforts should be made to prevent, treat and control HBV transmission in this population.


APOBEC-3G Deaminase , Coinfection , HIV Infections , Hepatitis B Surface Antigens , Humans , Morocco/epidemiology , Male , HIV Infections/genetics , HIV Infections/complications , HIV Infections/epidemiology , Female , Adult , Coinfection/genetics , Coinfection/epidemiology , Coinfection/virology , APOBEC-3G Deaminase/genetics , Case-Control Studies , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/blood , Middle Aged , Prevalence , Hepatitis B/genetics , Hepatitis B/epidemiology , Hepatitis B/complications , HIV-1/genetics , Young Adult , Hepatitis B virus/genetics
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812178

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Antiviral Agents , Dioscorea , Hepatitis B virus , Polysaccharides , p38 Mitogen-Activated Protein Kinases , Humans , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Polysaccharides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Hep G2 Cells , Antiviral Agents/pharmacology , Dioscorea/chemistry , Drug Synergism , Nucleosides/pharmacology , MAP Kinase Signaling System/drug effects , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/metabolism , Hepatitis B/drug therapy , Hepatitis B/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Guanine/analogs & derivatives , Guanine/pharmacology
4.
Am J Hum Genet ; 111(6): 1018-1034, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38749427

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Hepatitis B virus , Mutation , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Hepatitis B virus/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/genetics , Symporters/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/genetics , Genome, Viral , Hepatitis B Surface Antigens/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genomics/methods , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism
5.
Sci Rep ; 14(1): 10742, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730249

The selection pressure imposed by the host immune system impacts on hepatitis B virus (HBV) variability. This study evaluates HBV genetic diversity, nucleos(t)ide analogs resistance and HBsAg escape mutations in HBV patients under distinct selective pressures. One hundred and thirteen individuals in different phases of HBV infection were included: 13 HBeAg-positive chronic infection, 9 HBeAg-positive chronic hepatitis, 47 HBeAg-negative chronic infection (ENI), 29 HBeAg-negative chronic hepatitis (ENH) and 15 acute infected individuals. Samples were PCR amplified, sequenced and genetically analyzed for the overlapping POL/S genes. Most HBV carriers presented genotype A (84/113; 74.3%), subgenotype A1 (67/84; 79.7%), irrespective of group, followed by genotypes D (20/113; 17.7%), F (8/113; 7.1%) and E (1/113; 0.9%). Clinically relevant mutations in polymerase (tL180M/M204V) and in the Major Hydrophilic Region of HBsAg (sY100C, T118A/M, sM133T, sD144A and sG145R) were observed. Our findings, however, indicated that most polymorphic sites were located in the cytosolic loops (CYL1-2) and transmembrane domain 4 (TMD4) of HBsAg. Lower viral loads and higher HBV genetic diversity were observed in ENI and ENH groups (p < 0.001), suggesting that these groups are subjected to a higher selective pressure. Our results provide information on the molecular characteristics of HBV in a diverse clinical setting, and may guide future studies on the balance of HBV quasispecies at different stages of infection.


Genetic Variation , Genotype , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/genetics , Brazil/epidemiology , Male , Adult , Female , Middle Aged , Hepatitis B Surface Antigens/genetics , Mutation , Drug Resistance, Viral/genetics , DNA, Viral/genetics , Young Adult , Phylogeny , Hepatitis B e Antigens/genetics
6.
Front Cell Infect Microbiol ; 14: 1368473, 2024.
Article En | MEDLINE | ID: mdl-38766475

Objective: To analyze the amino acid substitution caused by mutations in the major hydrophilic region (MHR) of the S-region genes in the serum samples of occult hepatitis B virus infection (OBI), and to explore the reasons for the missed detection of HBsAg. Method: The full-length gene of the S-region in hepatitis B virus(HBV) in the chronic hepatitis B virus(CHB)(10 samples) and OBI groups(42 samples) was amplified using a lab-developed, two-round PCR amplification technology. The PCR amplification products were sequenced/clone sequenced, and the nucleotide sequences of the S-region gene in HBV were compared to the respective genotype consensus sequence. Results: Only 20 of the 42 samples in the OBI group had the S-region genes successfully amplified, with the lowest HBV DNA load of 20.1IU/ml. As S-region genes in HBV, 68 cloned strains were sequenced. In the OBI and CHB groups MHR region, with a mutation rate of 3.21% (155/4828) and 0.70% (5/710). The genetic mutation rate was significantly higher in the OBI group than in the CHB group (P<0.05). The common mutation types in the MHR region were: I126T, L162R, K122E, C124R, and C147Y.Mutations at s122, s126, and s162 were associated with subgenotypes, most of which being C genotypes. The high-frequency mutation sites L162R and K122E found in this study have not been reported in previous literature. Conclusion: The results of this study confirmed that MHR mutations can cause the missed detection of HBsAg, giving rise to OBI.


DNA, Viral , Genotype , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B Surface Antigens/blood , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Adult , Female , Male , DNA, Viral/genetics , DNA, Viral/blood , Middle Aged , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/blood , Mutation , Amino Acid Substitution , Viral Load , Sequence Analysis, DNA , Polymerase Chain Reaction/methods , Hepatitis B/virology , Hepatitis B/diagnosis , Mutation Rate , Aged , Young Adult
7.
J Med Virol ; 96(5): e29669, 2024 May.
Article En | MEDLINE | ID: mdl-38773784

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


DNA, Circular , Furocoumarins , Hepatitis B Surface Antigens , Hepatitis B virus , Transcription, Genetic , Furocoumarins/pharmacology , Humans , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hep G2 Cells , Mice , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic/drug effects , Antiviral Agents/pharmacology , DNA, Viral , Molecular Docking Simulation , Virus Replication/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Promoter Regions, Genetic
8.
Viruses ; 16(5)2024 04 30.
Article En | MEDLINE | ID: mdl-38793596

The concurrent seropositivity of HBsAg and anti-HBs has been described among patients with chronic hepatitis B (CHB), but its prevalence is variable. HBV S-gene mutations can affect the antigenicity of HBsAg. Patients with mutations in the 'α' determinant region of the S gene can develop severe HBV reactivation under immunosuppression. In this study at a tertiary liver center in the United States, we evaluated the frequency and virological characteristics of the HBsAg mutations among CHB patients with the presence of both HBsAg and anti-HBs. In this cohort, 45 (2.1%) of 2178 patients were identified to have a coexistence of HBsAg and anti-HBs, and 24 had available sera for the genome analysis of the Pre-S1, Pre-S2, and S regions. The frequency of mutations in the S gene was significantly higher among those older than 50 years (mean 8.5 vs. 5.4 mutations per subject, p = 0.03). Twelve patients (50%) had mutations in the 'α' determinant region of the S gene. Mutations at amino acid position 126 were most common in eight subjects. Three had a mutation at position 133. Only one patient had a mutation at position 145-the classic vaccine-escape mutation. Despite the universal HBV vaccination program, the vaccine-escape mutant is rare in our cohort of predominantly Asian patients.


Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Mutation , Tertiary Care Centers , Humans , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Female , Male , Middle Aged , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Adult , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/epidemiology , United States/epidemiology , Immune Evasion/genetics , Aged , Prevalence , Young Adult
9.
Bull Math Biol ; 86(5): 53, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594319

Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.


Hepatitis B virus , Hepatitis B , Mice , Humans , Animals , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Mathematical Concepts , Models, Biological , Antiviral Agents/therapeutic use
10.
Virol J ; 21(1): 92, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654327

BACKGROUND: Occult HBV infection (OBI) is a special form of hepatitis B virus (HBV) infection that may cause Liver cirrhosis and hepatocellular carcinoma, causing significant harm to patients. Given the insidious nature of OBI, it is usually not easy to be detected. Most of the samples currently studied are concentrated on blood donors, however, patients in this special state have not been fully studied. This project aimed to study the effect of HBV S region mutations on HBsAg in patients with clinical OBI. METHODS: Collect 107 HBsAg-/HBV DNA + blood samples from Beijing Youan Hospital, Capital Medical University from August 2022 to April 2023. Next, the successfully extracted and amplified HBV DNA S regions were sequenced. Construct mutant plasmids to verify the cell function of the high-frequency mutation sites and explore the possible molecular mechanism. RESULTS: Sixty-eight HBsAg-negative samples were sequenced, revealing high-frequency amino acid substitution sites in the HBV S protein, including immune escape mutations (i.e., sY100C、sK122R、sI126T、sT131P、and sS114T) and TMD (Transmembrane domain) region substitutions (i.e., sT5A、sG10D、sF20S、and sS3N). We constructed a portion of the mutant plasmids and found that sT5A, sF20S, sG10D, sS3N, sI68T, and sI126T single point mutations or combined mutations may decrease HBsAg expression or change the antigenicity of HBsAg leading to detection failure. CONCLUSIONS: HBsAg-negative patients may show various mutations and amino acid replacement sites at high frequency in the HBV S-region, and these mutations may lead to undetectable Hepatitis B surface antigen (HBsAg), HBsAg antigenic changes or secretion inhibition.


DNA, Viral , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B , Mutation , Humans , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Female , DNA, Viral/genetics , Male , Adult , Middle Aged , Hepatitis B/virology , Amino Acid Substitution , Genotype , Young Adult , Aged
11.
Arch Virol ; 169(5): 103, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38632180

Missense mutations in certain small envelope proteins diminish the efficacy of antibodies. Consequently, tracking the incidence and types of vaccine-escape mutations (VEMs) was crucial both before and after the introduction of universal hepatitis B vaccination in Japan in 2016. In this study, we isolated hepatitis B virus (HBV) DNA from 58 of 169 hepatitis B surface antigen (HBsAg)-positive blood samples from Japanese blood donors and determined the nucleotide sequence encoding the small envelope protein. DNA from six (10%) of the samples had VEMs, but no missense mutations, such as G145R, were detected. Complete HBV genome sequences were obtained from 29 of the 58 samples; the viral genotype was A1 in one (3%), A2 in three (10%), B1 in nine (31%), B2 in five (17%), B4 in one (3%), and C2 in 10 (34%) samples. Tenofovir-resistance mutations were detected in two (7%) samples. In addition, several core promoter mutations, such as 1762A>T and 1764G>A, and a precore nonsense mutation, 1986G>A, which are risk factors for HBV-related chronic liver disease, were detected. These findings provide a baseline for future research and highlight the importance of ongoing monitoring of VEMs and drug resistance mutations in HBV DNA from HBsAg-positive blood donors without HBV antibodies.


Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Japan , Blood Donors , DNA, Viral/genetics , Mutation , Genotype
12.
Viruses ; 16(3)2024 02 21.
Article En | MEDLINE | ID: mdl-38543689

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Coordination Complexes , Hepatitis B virus , Hepatitis B, Chronic , Naphthalenesulfonates , Male , Mice , Rats , Animals , Dogs , Hepatitis B virus/physiology , Hepatitis B Surface Antigens/genetics , RNA, Viral , RNA, Messenger , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA, Viral/genetics , Hepatitis B, Chronic/drug therapy , DNA, Circular
13.
J Med Virol ; 96(3): e29530, 2024 Mar.
Article En | MEDLINE | ID: mdl-38529528

Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.


Hepatitis B, Chronic , Hepatitis B , Infant , Adolescent , Humans , Young Adult , Hepatitis B virus/genetics , DNA, Viral/genetics , Liver/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens , Genomics
14.
Front Immunol ; 15: 1352929, 2024.
Article En | MEDLINE | ID: mdl-38545116

Background: HBe-antigen(Ag)-negative chronic hepatitis B virus (HBV) infection is characterized by little liver fibrosis progression and vigorous HBV-multispecific CD8+ T-cell response. Aims: To assess whether HBsAg level could discriminate different HBeAg-negative chronic HBV infection subtypes with dissimilar quality of HBV-specific CD8+ T-cell response. Methods: We recruited 63 HBeAg-negative chronic HBV infection patients in which indirect markers of liver inflammation/fibrosis, portal pressure, viral load (VL), and HBV-specific CD8+ cell effector function were correlated with HBsAg level. Results: A positive linear trend between HBsAg level and APRI, liver stiffness (LS), liver transaminases, and HBV VL, and a negative correlation with platelet count were observed. Frequency of cases with HBV-specific CD8+ T-cell proliferation against at least two HBV epitopes was higher in HBsAg < 1,000 IU/ml group. CD8+ T-cell expansion after HBVpolymerase456-63-specific stimulation was impaired in HBsAg > 1,000 IU/ml group, while the response against HBVcore18-27 was preserved and response against envelope183-91 was nearly abolished, regardless of HBsAg level. Cases with preserved HBVpolymerase456-63 CD8+ cell response had lower LS/duration of infection and APRI/duration of infection rates. HBV-polymerase456-63-specific CD8+ T-cell proliferation intensity was negatively correlated with LS/years of infection ratio. Conclusion: HBsAg > 1,000 IU/ml HBeAg-negative chronic HBV infection group shows indirect data of higher degree of inflammation, liver stiffness, and fibrosis progression speed, which are related to an impaired HBV-polymerase-specific CD8+ T-cell response.


Gene Products, pol , Hepatitis B, Chronic , Humans , Hepatitis B virus/physiology , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , Inflammation , Liver Cirrhosis , CD8-Positive T-Lymphocytes , Alanine Transaminase , Phenotype
15.
PLoS One ; 19(3): e0299403, 2024.
Article En | MEDLINE | ID: mdl-38489292

N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.


Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus , Carcinoma, Hepatocellular/pathology , Glycosylation , Liver Neoplasms/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Autophagy/genetics , Membrane Proteins/metabolism , Polysaccharides/metabolism
16.
PLoS Comput Biol ; 20(3): e1011238, 2024 Mar.
Article En | MEDLINE | ID: mdl-38466770

Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.


Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , DNA, Viral/genetics , Hepatitis B/drug therapy , Hepatitis B/pathology , Liver/pathology , DNA, Circular , Biomarkers , Antiviral Agents/therapeutic use
18.
Virus Genes ; 60(2): 235-239, 2024 Apr.
Article En | MEDLINE | ID: mdl-38349448

Hepatitis B virus (HBV) vaccine is composed of the purified hepatitis B surface antigen (HBsAg) that is produced by recombinant DNA technology. The neutralizing antibodies induced by vaccination target mainly the "a" determinant, aa124-147, of the outer viral envelope (HBsAg). In the present work, we demonstrate a case study for vaccinated patient that is infected with a vaccine escape HBV strain (Eg200). Characterization of the isolate Eg200 showed that it belongs to the genotype D and an uncommon sub-genotype in Egypt; D9. The DNA sequence encoding HBsAg was sequenced. Mutational analysis of the HBsAg showed a double mutation in the "a" determinant of this HBV isolate; T125M and P127T. However, such substitutions were found to be conserved to the detected serotype, ayw3, of Eg200 isolate. This case report indicates that continuous characterization of breakthrough vaccine escape strains of HBV is essential to develop the immunization strategies against HBV infection.


Hepatitis B virus , Hepatitis B , Humans , Hepatitis B Surface Antigens/genetics , Hepatitis B Antibodies , Hepatitis B Vaccines/genetics , Mutation , DNA, Viral/genetics
19.
Infect Genet Evol ; 119: 105572, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367678

This investigation delineates an exhaustive analysis of the clinical, immunological, and genomic landscapes of hepatitis B virus (HBV) infection across a cohort of 22 verified patients. The demographic analysis unveiled a pronounced male bias (77.27%), with patient ages spanning 20 to 85 years and durations of illness ranging from 10 days to 4 years. Predominant clinical manifestations included fever, fatigue, anorexia, abdominal discomfort, and arthralgia, alongside observed co-morbidities such as chronic renal disorders and hepatocellular carcinoma. Antigenic profiling of the HBV envelope proteins elucidated significant heterogeneity among the infected subjects, particularly highlighted by discordances in the detection capabilities of small and large HBsAg assays, suggesting antigenic diversity. Quantitative assessment of viral loads unveiled a broad spectrum, accompanied by atypical HBeAg reactivity patterns, challenging the reliability of existing serological markers. Correlative studies between viral burden and antigenicity of the envelope proteins unearthed phenomena indicative of diagnostic evasion. Notably, samples demonstrating robust viral replication were paradoxically undetectable by the large HBsAg ELISA kit, advocating for more sophisticated diagnostic methodologies. Genotypic examination of three HBV isolates classified them as genotype D (D2), with phylogenetic alignment to strains from various global origins. Mutational profiling identified pivotal mutations within the basic core promoter and preS2/S1 regions, associated with an augmented risk of hepatocellular carcinoma. Further, mutations discerned in the small HBsAg and RT/overlap regions were recognized as contributors to vaccine and/or diagnostic escape mechanisms. In summation, this scholarly discourse elucidates the intricate interplay of clinical presentations, antigenic diversity, and genomic attributes in HBV infection, accentuating the imperative for ongoing investigative endeavors to refine diagnostic and therapeutic modalities.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Male , Hepatitis B virus , Hepatitis B Surface Antigens/genetics , Bangladesh/epidemiology , Phylogeny , Reproducibility of Results , Mutation , Genotype , Antigenic Variation , Genomics , DNA, Viral/genetics
20.
Asian Pac J Cancer Prev ; 25(2): 371-377, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38415521

BACKGROUND: Chronic hepatitis B (CHB) is well-known as a major risk for liver cirrhosis and hepatocellular carcinoma (HCC). The A1762T/G1764A double mutation in the hepatitis B virus genome affects the production of HBe antigen and is established as a predictive marker for progression to HCC. Thus, this study aimed to investigate the prevalence and clinical significance of the mutation in Thai CHB patients. METHODS:  A cross-sectional study was conducted in 78 Thai CHB patients who were assessed for hepatitis B profiles, HBsAg, HBeAg and anti-HBeAg, transaminitis, liver fibrosis defined by FIB-4 (FIB-4) score and AST to platelet ratio index (APRI), alpha-fetoprotein (AFP) and active hepatitis B status. HBV A1762T/G1764A mutation was examined by SYBR Green I Real-time PCR. Chi-square and Mann-Whiney U tests were performed to determine the association between the mutation and variables. RESULTS: The prevalence of patients infected with the A1762T/G1764A mutation was 44.9%. The mutation was associated with HBeAg status (p=0.027) and HBsAg levels (p=0.008), transaminitis (p=0.011), and active hepatitis B (p=0.037), but not liver fibrosis markers, FIB-4 score and APRI, and AFP. Binary logistic regression identified the mutation as a predictive factor of active hepatitis B (OR 3.5, 95%CI, 1.1-11.3, p=0.037). Patients infected with the mutant exhibited significantly higher levels of HBsAg (p=0.011) and HBV viral load (p=0.047), but lower levels of HBeAg (p=0.12) than those infected with the wild-type HBV. CONCLUSION: The data indicate the high prevalence of the A1762T/G1764A mutation and its significant association with the severity of Thai CHB patients and the HBV mutation is proposed as a predictive marker of active hepatitis B status in CHB patients.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/complications , Cross-Sectional Studies , alpha-Fetoproteins , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , Clinical Relevance , DNA, Viral/genetics , Mutation , Liver Cirrhosis/epidemiology , Liver Cirrhosis/genetics , Liver Cirrhosis/complications , Genotype
...