Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.755
Filter
1.
Sci Rep ; 14(1): 15465, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38965394

ABSTRACT

Cliffs contain one of the least known plant communities, which has been overlooked in biodiversity assessments due to the inherent inaccessibility. Our study adopted the unmanned aerial vehicle (UAV) with the telephoto camera to remotely clarify floristic variability across unreachable cliffs. Studied cliffs comprised 17 coastal and 13 inland cliffs in Gageodo of South Korea, among which 9 and 5 cliffs were grazed by the introduced cliff-dwelling goats. The UAV telephotography showed 154 and 166 plant species from coastal and inland cliffs, respectively. Inland cliffs contained more vascular plant species (P < 0.001), increased proportions of fern and woody species (P < 0.05), and decreased proportion of herbaceous species (P < 0.001) than coastal cliffs. It was also found that coastal and inland cliffs differed in the species composition (P < 0.001) rather than taxonomic beta diversity (P = 0.29). Furthermore, grazed coastal cliffs featured the elevated proportions of alien and annual herb species than ungrazed coastal cliffs (P < 0.05). This suggests that coastal cliffs might not be totally immune to grazing if the introduced herbivores are able to access cliff microhabitats; therefore, such anthropogenic introduction of cliff-dwelling herbivores should be excluded to conserve the native cliff plant communities.


Subject(s)
Biodiversity , Plants , Animals , Republic of Korea , Islands , Unmanned Aerial Devices , Herbivory , Goats , Ecosystem
2.
Bull Environ Contam Toxicol ; 113(1): 8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981915

ABSTRACT

Monitoring wildlife exposure to biological hazards is a critical component of the wildlife risk assessment. In this study 38 hair samples were collected from 8 different species from ten districts of Russian Far East and Siberia and analysed for the presence of organochlorine pesticides (OCP). 50% of the samples were contaminated with - p, p'-DDT, α-HCH and DDD. DDT was the main contaminant found in 13 sample at concentrations range of 14.3 to 369.5 pg/mg hair, mean 91.9 ± 89.7 pg/mg. α-HCH was detected in three samples with the concentrations range 29.9-180.2 pg/mg. The p, p'-DDD was found only in one hair sample of Siberian roe deer from Altai region at 52.6 pg/mg. The exposure level is depended on animals habitat location. The most contaminated region is Terney district which is in the proximity to the borders with China and North Korea where OCP are still in use.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Hair , Hydrocarbons, Chlorinated , Pesticides , Animals , Hydrocarbons, Chlorinated/analysis , Hair/chemistry , Siberia , Pesticides/analysis , Environmental Pollutants/analysis , Russia , Mammals , DDT/analysis , Herbivory
3.
J Environ Manage ; 365: 121695, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968891

ABSTRACT

Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.


Subject(s)
Denitrification , Grassland , Herbivory , Nitrates , Soil , Soil/chemistry , Nitrates/metabolism , Nitrates/analysis , Nitrogen/metabolism , Nitrification , Animals
4.
J Math Biol ; 89(2): 22, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951257

ABSTRACT

Group defense in prey and hunting cooperation in predators are two important ecological phenomena and can occur concurrently. In this article, we consider cooperative hunting in generalist predators and group defense in prey under a mathematical framework to comprehend the enormous diversity the model could capture. To do so, we consider a modified Holling-Tanner model where we implement Holling type IV functional response to characterize grazing pattern of predators where prey species exhibit group defense. Additionally, we allow a modification in the attack rate of predators to quantify the hunting cooperation among them. The model admits three boundary equilibria and up to three coexistence equilibrium points. The geometry of the nontrivial prey and predator nullclines and thus the number of coexistence equilibria primarily depends on a specific threshold of the availability of alternative food for predators. We use linear stability analysis to determine the types of hyperbolic equilibrium points and characterize the non-hyperbolic equilibrium points through normal form and center manifold theory. Change in the model parameters leading to the occurrences of a series of local bifurcations from non-hyperbolic equilibrium points, namely, transcritical, saddle-node, Hopf, cusp and Bogdanov-Takens bifurcation; there are also occurrences of global bifurcations such as homoclinic bifurcation and saddle-node bifurcation of limit cycles. We observe two interesting closed 'bubble' form induced by global bifurcations due to change in the strength of hunting cooperation and the availability of alternative food for predators. A three dimensional bifurcation diagram, concerning the original system parameters, captures how the alternation in model formulation induces gradual changes in the bifurcation scenarios. Our model highlights the stabilizing effects of group or gregarious behaviour in both prey and predator, hence supporting the predator-herbivore regulation hypothesis. Additionally, our model highlights the occurrence of "saltatory equilibria" in ecological systems and capture the dynamics observed for lion-herbivore interactions.


Subject(s)
Ecosystem , Food Chain , Mathematical Concepts , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Population Dynamics/statistics & numerical data , Cooperative Behavior , Computer Simulation , Herbivory , Linear Models
5.
Sci Rep ; 14(1): 16221, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003385

ABSTRACT

In East Africa, community-based conservation models (CBCMs) have been established to support the conservation of wildlife in fragmented landscapes like the Tarangire Ecosystem, Tanzania. To assess how different management approaches maintained large herbivore populations, we conducted line distance surveys and estimated seasonal densities of elephant, giraffe, zebra, and wildebeest in six management units, including three CBCMs, two national parks (positive controls), and one area with little conservation interventions (negative control). Using a Monte-Carlo approach to propagate uncertainties from the density estimates and trend analysis, we analyzed the resulting time series (2011-2019). Densities of the target species were consistently low in the site with little conservation interventions. In contrast, densities of zebra and wildebeest in CBCMs were similar to national parks, providing evidence that CBCMs contributed to the stabilization of these migratory populations in the central part of the ecosystem. CBCMs also supported giraffe and elephant densities similar to those found in national parks. In contrast, the functional connectivity of Lake Manyara National Park has not been augmented by CBCMs. Our analysis suggests that CBCMs can effectively conserve large herbivores, and that maintaining connectivity through CBCMs should be prioritized.


Subject(s)
Conservation of Natural Resources , Ecosystem , Herbivory , Animals , Conservation of Natural Resources/methods , Tanzania , Elephants/physiology , Population Dynamics , Population Density , Giraffes/physiology , Equidae/physiology
6.
PLoS One ; 19(7): e0305462, 2024.
Article in English | MEDLINE | ID: mdl-38990928

ABSTRACT

Many habitat-specialist organisms occur in distinct, patchy habitat, yet do not occupy all patches, and an important question is why apparently suitable habitat remains unoccupied. We examined factors influencing patch occupancy in near-threatened, little-known Diademed Plovers (Phegornis mitchellii), arguably the bird most specialized to life in High Andean peatlands. Andean peatlands are well-suited to occupancy modelling because they are discrete patches of humid habitat within a matrix of high-altitude steppe. We hypothesized that Diademed Plovers occupy preferably larger and more humid peatlands, and avoid peatlands used for grazing by llamas and vicuñas, which may trample vegetation and nests. From December 2021 to February 2022 (breeding season), we conducted plover occupancy surveys (2-4) on 40 peatlands at Lagunas de Vilama, a landscape of arid steppe and wetlands above 4,500 m in NW Argentina. We measured peatland size, grazing pressure, topographic and remotely-sensed variables that correlate with humidity, and incorporated these as covariates in occupancy models. Occupancy models showed that more than 50% of the studied peatlands were used by Diademed Plovers and most showed signs of reproduction, highlighting the importance of the Vilama Wetlands for Diademed Plover conservation. Within peatlands, Diademed Plovers were most often associated with headwaters. The top ranked occupancy model included constant detection, random spatial effects, and a single occupancy covariate: mean NDWI (Normalized Difference Water Index, an index correlated with water content and humidity) over the previous three years. Contrary to our prediction, Diademed Plovers preferred less water-saturated peatlands (lower NDWI), possibly to avoid nest flooding. This may be especially important in wet years, like the year when we conducted our surveys. Neither peatland size nor grazing by llamas and vicuñas affected peatland use by Diademed Plovers, suggesting that llama grazing at current levels may be compatible with plover conservation. For organisms that specialize on humid habitats, such as peatlands, factors affecting occupancy may vary temporally with variation in climate, and we recommend follow-up surveys across multi-year timescales to untangle the impact of climate on animals' use of humid habitats.


Subject(s)
Camelids, New World , Ecosystem , Humidity , Animals , Camelids, New World/physiology , Argentina , Wetlands , Herbivory , Endangered Species , Soil/chemistry
7.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014327

ABSTRACT

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Subject(s)
Heat-Shock Response , Herbivory , Larva , Moths , Solanum tuberosum , Solanum tuberosum/physiology , Solanum tuberosum/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Animals , Moths/physiology , Larva/physiology , Gene Expression Regulation, Plant , Plant Leaves/physiology , Plant Leaves/parasitology , Hot Temperature , Oxylipins/metabolism , Cyclopentanes/metabolism , Plant Defense Against Herbivory , Transcriptome , Climate Change
8.
Microbiome ; 12(1): 127, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014485

ABSTRACT

BACKGROUND: Since the 1980s, soils in a 22-km2 area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied. RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts. CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.


Subject(s)
Microbiota , Plant Diseases , Soil Microbiology , Animals , Plant Diseases/prevention & control , Plant Diseases/microbiology , Rhizosphere , Switzerland , Insecta , Bacteria/classification , Soil/chemistry , Ascomycota/physiology , Insect Control/methods , Plant Roots/microbiology , Herbivory , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Symbiosis
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230128, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913067

ABSTRACT

Negative density dependence (NDD) in biotic interactions of interference such as plant-plant competition, granivory and herbivory are well-documented mechanisms that promote species' coexistence in diverse plant communities worldwide. Here, we investigated the generality of a novel type of NDD mechanism that operates through the mutualistic interactions of frugivory and seed dispersal among fruit-eating birds and plants. By sampling community-wide frugivory interactions at high spatial and temporal resolution in Pennsylvania, Puerto Rico, Peru, Brazil and Argentina, we evaluated whether interaction frequencies between birds and fruit resources occurred more often (selection), as expected, or below expectations (under-utilization) set by the relative fruit abundance of the fruit resources of each plant species. Our models considered the influence of temporal scales of fruit availability and bird phylogeny and diets, revealing that NDD characterizes frugivory across communities. Irrespective of taxa or dietary guild, birds tended to select fruits of plant species that were proportionally rare in their communities, or that became rare following phenological fluctuations, while they mostly under-utilized abundant fruit resources. Our results demonstrate that negative density-dependence in frugivore-plant interactions provides a strong equalizing mechanism for the dispersal processes of fleshy-fruited plant species in temperate and tropical communities, likely contributing to building and sustaining plant diversity. This article is part of the theme issue 'Diversitydependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Birds , Fruit , Symbiosis , Animals , Birds/physiology , Fruit/physiology , Seed Dispersal , Feeding Behavior , Population Density , Herbivory , Argentina , Pennsylvania , Brazil , Puerto Rico
10.
BMC Plant Biol ; 24(1): 609, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926877

ABSTRACT

BACKGROUND: Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS: 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS: Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.


Subject(s)
Coleoptera , Herbivory , Trichomes , Vitis , Animals , Vitis/genetics , Vitis/physiology , Vitis/parasitology , Trichomes/physiology , Trichomes/genetics , Coleoptera/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Gene Expression Regulation, Plant , Plant Defense Against Herbivory
11.
Sci Rep ; 14(1): 12649, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825611

ABSTRACT

Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.


Subject(s)
Herbivory , Sorghum , Spodoptera , Animals , Spodoptera/physiology , Spodoptera/growth & development , Sorghum/parasitology , Sorghum/growth & development , Larva
12.
Ecol Lett ; 27(6): e14450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857323

ABSTRACT

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.


Subject(s)
Biomass , Fires , Grassland , Herbivory , Animals , Poaceae/physiology , Africa
13.
J Environ Manage ; 362: 121168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823302

ABSTRACT

Targeted grazing to control undesirable plant species is increasingly of interest across a diversity of ecosystems, particularly as an alternative or complement to widely used herbicides. However, there are limited comprehensive evaluations of targeted grazing that evaluate both invasive species management effectiveness and potential negative effects on the ecosystem. Phragmites australis, a tall-statured, dense perennial invasive grass from Eurasia, is a pervasive problem in wetlands across the North American continent. As with many invasive species where management has historically relied on herbicides and resistance is a growing concern, land managers seek viable alternatives that have minimal negative ecosystem impacts. Grazing has been used for millennia to manage native Phragmites in Europe. Similarly, in its invasive range within North America, small-scale studies suggest Phragmites may be suppressed by grazers. Yet, the effectiveness of grazing at large scales and its effects on broader ecosystem properties remain largely unknown. We evaluated the influence of targeted grazing on vegetation, soil nutrients, and water nutrients over two years in large plots (∼300x the size of previous studies). We also tested the effects of mowing, a treatment that can be used to facilitate grazer access to large, dense Phragmites stands. In line with our predictions, we found that cattle grazing effectively suppressed invasive Phragmites over two years. Mowing reduced litter, and moderately reduced standing dead Phragmites, both of which suppress native plant germination in this system. However, these reductions in Phragmites were not accompanied by indications of native plant community recovery, as we had optimistically predicted. Despite the potential for grazing to reduce nutrient sequestration by plants and fertilize soils, we were surprised to find no clear negative effects of grazing on nutrient mobilization to groundwater or floodwater. Taken together, our findings indicate that targeted grazing, when implemented at broad scales over short time frames, is effective at achieving invasive plant management goals without sizable nutrient impacts. However, additional steps will be needed to achieve the restoration of diverse, robust native plant communities.


Subject(s)
Introduced Species , Wetlands , Animals , Poaceae , Ecosystem , Soil , Herbivory , Nutrients
14.
PLoS One ; 19(6): e0305370, 2024.
Article in English | MEDLINE | ID: mdl-38917100

ABSTRACT

Land use change affects both pollinator and herbivore populations with consequences for crop production. Recent evidence also shows that land use change affects insect traits, with intraspecific body size of pollinators changing across landscape gradients. However, the consequences on crop production of trait changes in different plant interactors have not been well-studied. We hypothesized that changes in body size of key species can be enough to affect crop productivity, and therefore looked at how the field-realistic variation in body size of both an important pollinator, Bombus impatiens (Cresson), and a key pest herbivore, Lygus lineolaris (Palisot), can affect fruit size and damage in strawberry. First, we determined if pests vary in body size along land use gradients as prior studies have documented for pollinators; and second, we tested under controlled conditions how the individual and combined changes in size of an important pollinator and a key herbivore pest affect strawberry fruit production. The key herbivore pest was smaller in landscapes with more natural and semi-natural habitat, confirming that herbivore functional traits can vary along a land use gradient. Additionally, herbivore size, and not pollinator size, marginally affected fruit production-with plants exposed to larger pests producing smaller fruits. Our findings suggest that land use changes at the landscape level affect crop production not just through changes in the species diversity of insect communities that interact with the plant, but also through changes in body size traits.


Subject(s)
Body Size , Fragaria , Fruit , Herbivory , Pollination , Fragaria/physiology , Fragaria/parasitology , Fragaria/growth & development , Animals , Pollination/physiology , Bees/physiology
15.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892132

ABSTRACT

The use of secondary metabolites of rice to control pests has become a research hotspot, but little is known about the mechanism of rice self-resistance. In this study, metabolomics analysis was performed on two groups of rice (T1, with insect pests; T2, without pests), indicating that fatty acids, alkaloids, and phenolic acids were significantly up-regulated in T1. The up-regulated metabolites (p-value < 0.1) were enriched in linoleic acid metabolism, terpene, piperidine, and pyridine alkaloid biosynthesis, α-linolenic acid metabolism, and tryptophan metabolism. Six significantly up-regulated differential metabolites in T1 were screened out: N-trans-feruloyl-3-methoxytyramine (1), N-trans-feruloyltyramine (2), N-trans-p-coumaroyltyramine (3), N-cis-feruloyltyramine (4), N-phenylacetyl-L-glutamine (5), and benzamide (6). The insect growth inhibitory activities of these six different metabolites were determined, and the results show that compound 1 had the highest activity, which significantly inhibited the growth of Chilo suppressalis by 59.63%. Compounds 2-4 also showed a good inhibitory effect on the growth of Chilo suppressalis, while the other compounds had no significant effect. RNA-seq analyses showed that larval exposure to compound 1 up-regulated the genes that were significantly enriched in ribosome biogenesis in eukaryotes, the cell cycle, ribosomes, and other pathways. The down-regulated genes were significantly enriched in metabolic pathways, oxidative phosphorylation, the citrate cycle (TCA cycle), and other pathways. Eighteen up-regulated genes and fifteen down-regulated genes from the above significantly enriched pathways were screened out and verified by real-time quantitative PCR. The activities of detoxification enzymes (glutathione S-transferase (GST); UDP-glucuronosyltransferase (UGT); and carboxylesterase (CarE)) under larval exposure to compound 1 were measured, which indicated that the activity of GST was significantly inhibited by compound 1, while the activities of the UGT and CarE enzymes did not significantly change. As determined by UPLC-MS, the contents of compound 1 in the T1 and T2 groups were 8.55 ng/g and 0.53 ng/g, respectively, which indicated that pest insects significantly induced the synthesis of compound 1. Compound 1 may enhance rice insect resistance by inhibiting the detoxification enzyme activity and metabolism of Chilo suppressalis, as well as promoting cell proliferation to affect its normal growth and development process. The chemical-ecological mechanism of the insect resistance of rice is preliminarily clarified in this paper.


Subject(s)
Metabolomics , Oryza , Oryza/metabolism , Oryza/genetics , Oryza/parasitology , Animals , Metabolomics/methods , Alkaloids/metabolism , Alkaloids/pharmacology , Gene Expression Regulation, Plant , Metabolome , Herbivory , Coumaric Acids , Tyramine/analogs & derivatives
16.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892266

ABSTRACT

Insects have developed sophisticated detoxification systems to protect them from plant secondary metabolites while feeding on plants to obtain necessary nutrients. As an important enzyme in the system, glycosyltransferase 1 (GT1) conjugates toxic compounds to mitigate their harm to insects. However, the evolutionary link between GT1s and insect plant feeding remains elusive. In this study, we explored the evolution of GT1s across different insect orders and feeding niches using publicly available insect genomes. GT1 is widely present in insect species; however, its gene number differs among insect orders. Notably, plant-sap-feeding species have the highest GT1 gene numbers, whereas blood-feeding species display the lowest. GT1s appear to be associated with insect adaptations to different plant substrates in different orders, while the shift to non-plant feeding is related to several losses of GT1s. Most large gene numbers are likely the consequence of tandem duplications showing variations in collinearity among insect orders. These results reveal the potential relationships between the evolution of GT1s and insect adaptation to plant feeding, facilitating our understanding of the molecular mechanisms underlying insect-plant interactions.


Subject(s)
Adaptation, Physiological , Gene Duplication , Glycosyltransferases , Insecta , Animals , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Adaptation, Physiological/genetics , Plants/genetics , Plants/metabolism , Evolution, Molecular , Phylogeny , Herbivory , Genome, Insect , Insect Proteins/genetics , Insect Proteins/metabolism
17.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892301

ABSTRACT

Leymus chinensis (Trin.) Tzvel., also known as the "Alkali Grass", is a major forage grass in the eastern and northeastern steppe vegetation in the Songnen Prairie. It is of great practical significance for grassland management to understand the influence of animal saliva on L. chinensis during animal feeding. In this study, we used clipping and daubing animal saliva to simulate responses to grazing by L. chinensis, and analyzed the physiological and metabolomic changes in response to simulated animal feeding. Results showed that the effects of animal saliva on physiological and metabolic processes of the treated plants produced a recovery phenomenon. Moreover, the effects of animal saliva produced a large number of differential metabolites related to several known metabolic pathways, among which the flavonoid biosynthesis pathway has undergone significant and persistent changes. We posit that the potential metabolic mechanisms of L. chinensis in response to simulated animal feeding are closely related to flavonoid biosynthesis.


Subject(s)
Metabolome , Metabolomics , Poaceae , Animals , Poaceae/metabolism , Metabolomics/methods , Flavonoids/metabolism , Animal Feed , Saliva/metabolism , Metabolic Networks and Pathways , Herbivory
18.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892311

ABSTRACT

Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.


Subject(s)
Aphids , Gene Expression Regulation, Plant , Herbivory , Moths , Populus , Transcriptome , Populus/genetics , Populus/parasitology , Populus/metabolism , Animals , Aphids/physiology , Moths/physiology , Moths/genetics , Metabolomics/methods , Gene Expression Profiling , Metabolome
19.
Sci Total Environ ; 941: 173664, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838998

ABSTRACT

Ecological stoichiometry serves as a valuable tool for comprehending biogeochemical cycles within grassland ecosystems. The impact of grazing time on the concentration and stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) in desert steppe ecosystems remains ambiguous. This research was carried out in a desert grassland utilizing a completely randomized experimental design. Four distinct grazing time treatments were implemented: fenced grassland (FG, control), delay to start and early to end grazing grassland (DEG), delay to start grazing grassland (DG), and traditional grazing grassland (TG). The patterns of C, N, and P concentrations and their stoichiometry in various components of the ecosystem, as well as their driving factors under different grazing times were examined. The results showed that grazing time positively influenced C and N concentrations in leaves, while negatively affecting N concentrations in roots. TG had a significant positive effect on soil P concentrations but a negative effect on soil C:P and N:P ratios. Plant C:N, C:P, and N: P ratios were mainly influenced by N and P. The soil C:N ratio was primarily influenced by soil N, the soil C:P ratio was affected by both soil C and P, and the soil N:P ratio was influenced by both soil N and P. The growth of plants in desert steppes is mainly limited by P; however, as grazing time increased, P limitation gradually decreased and the N cycling rate increased. C-N, C-P, and N-P in various plant organs and soils demonstrated significant anisotropic growth relationships at different grazing times. Soil organic carbon, pH, and soil total phosphorus were the main driving factors that affected changes in ecological C:N:P stoichiometry. These results will help improve grassland management and anticipate the response of grassland systems to external disturbances with greater accuracy.


Subject(s)
Desert Climate , Grassland , Nitrogen , Phosphorus , Seasons , Soil , Phosphorus/analysis , Nitrogen/analysis , Soil/chemistry , Herbivory , Nitrogen Cycle , Carbon/metabolism , Carbon/analysis , China , Animals
20.
Sci Total Environ ; 940: 173687, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38830424

ABSTRACT

Below-ground herbivory impacts plant development and often induces systemic responses in plants that affect the performance and feeding behavior of above-ground herbivores. Meanwhile, pest-damaged root tissue can enhance a plant's susceptibility to abiotic stress such as salinity. Yet, the extent to which herbivore-induced plant defenses are modulated by such abiotic stress has rarely been studied. In this study, we examine whether root feeding by larvae of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) affects the performance of the above-ground, sap-feeding aphid Aphis gossypii (Hemiptera: Aphididae) on cotton, and assess whether those interactions are modulated by salinity stress. In the absence of salinity stress, A. segetum root feeding does not affect A. gossypii development. On the other hand, under intense salinity stress (i.e., 600 mM NaCl), A. segetum root feeding decreases aphid development time by 16.1 % and enhances fecundity by 72.0 %. Transcriptome, metabolome and bioassay trials showed that root feeding and salinity stress jointly trigger the biosynthesis of amino acids in cotton leaves. Specifically, increased titers of valine in leaf tissue relate to an enhanced performance of A. gossypii. Taken together, salinity stress alters the interaction between above- and below-ground feeders by changing amino acid accumulation. Our findings advance our understanding of how plants cope with concurrent biotic and abiotic stressors, and may help tailor plant protection strategies to varying production contexts.


Subject(s)
Aphids , Herbivory , Moths , Salt Stress , Animals , Aphids/physiology , Moths/physiology , Gossypium , Larva , Plant Roots , Salinity , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...